Volume 43 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
LIU Rujun, HUANG Xiang, HUANG Haihong, TAO Meisheng, YIN Chaochao, BAN Xukeling. Numerical Simulation and Experimental Study on Secondary Cold Extrusion Strengthening of Pressed Bush[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1142-1150. doi: 10.13433/j.cnki.1003-8728.20240071
Citation: LIU Rujun, HUANG Xiang, HUANG Haihong, TAO Meisheng, YIN Chaochao, BAN Xukeling. Numerical Simulation and Experimental Study on Secondary Cold Extrusion Strengthening of Pressed Bush[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1142-1150. doi: 10.13433/j.cnki.1003-8728.20240071

Numerical Simulation and Experimental Study on Secondary Cold Extrusion Strengthening of Pressed Bush

doi: 10.13433/j.cnki.1003-8728.20240071
  • Received Date: 2023-11-14
  • Publish Date: 2024-07-25
  • The ear hole of 7050 aluminum alloy was strengthened by using the second cold extrusion of pressed bush; The effects of the second cold extrusion on the residual stress, plastic deformation, and roughness of the inner surface of the ear hole were studied via X-ray diffractometer, coordinate measuring machine, and roughness meter, and which were verified through finite element simulation. The experimental results show that comparing with that in first cold extrusion, the second cold extrusion of the pressed sleeve can effectively improve the non-uniformity of residual stress at both ends of the sample. As the relative extrusion amount of the second cold extrusion increases, the peak residual compressive stress and the depth of the stress layer increase, and the degree of the plastic deformation increases too, meanwhile the surface roughness of the hole wall decreases. When the relative extrusion amount is 2.5%, the maximum residual compressive stress can reach -400.3 MPa, and there is a residual compressive stress layer of about 14 mm. The inner diameters of the sample end face A and end face B increased by 0.56 mm and 0.54 mm, respectively; the surface roughness of the hole wall decreased by 71.0%. Comparing with the first cold extrusion, the second cold extrusion strengthening forms a deeper residual compressive stress layer and plastic deformation layer along the radial direction of the hole wall, significantly improving the overall service performance of the ear hole.
  • loading
  • [1]
    陈忱, 曹瑶琴, 宋颖刚, 等. 直升机旋翼关键零件孔挤压强化工艺应用研究[J]. 直升机技术, 2016(4): 38-42. doi: 10.3969/j.issn.1673-1220.2016.04.009

    CHEN C, CAO Y Q, SONG Y G, et al. Application research about hole extrusion process of key component of helicopter rotor hub[J]. Helicopter Technique, 2016(4): 38-42. (in Chinese) doi: 10.3969/j.issn.1673-1220.2016.04.009
    [2]
    万里, 邓运来, 范世通. 时效处理对7050铝合金厚板材料组织、性能及残余应力的影响[J]. 中国有色金属学报, 2018, 28(7): 1277-1283. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201807001.htm

    WAN L, DENG Y L, FAN S T. Effects of aging on microstructures, properties and residual stress of 7050 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(7): 1277-1283. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201807001.htm
    [3]
    KIM H K, CARLSON S S, STANFIELD M L, et al. Mitigating cutting-induced plasticity errors in the determination of residual stress at cold expanded holes using the contour method[J]. Experimental Mechanics, 2022, 62(1): 3-18. doi: 10.1007/s11340-021-00756-z
    [4]
    KUMAR S A, BABU N C M. Effect of proximity hole on induced residual stresses during cold expansion of adjacent holes[J]. Materials Today: Proceedings, 2018, 5(2): 5709-5715. doi: 10.1016/j.matpr.2017.12.165
    [5]
    张铁亮, 王卓, 宋镝冲, 等. 紧固件防松性能定量评价方法[J]. 机械工程学报, 2021, 57(15): 71-79. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202115008.htm

    ZHANG T L, WANG Z, SONG D C, et al. Quantitative evaluation method of anti-loosening performance for fasteners[J]. Journal of Mechanical Engineering, 2021, 57(15): 71-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202115008.htm
    [6]
    WARNER J J, CLARK P N, HOEPPNER D W. Cold expansion effects on cracked fastener holes under constant amplitude and spectrum loading in the 2024-T351 aluminum alloy[J]. International Journal of Fatigue, 2014, 68: 209-216. doi: 10.1016/j.ijfatigue.2014.05.002
    [7]
    WEN S Z, LIU C Y, WU R L, et al. Effect of cold expansion on high cycle fatigue of 7A85 aluminum alloy straight lugs[J]. Rare Metal Materials and Engineering, 2015, 44(10): 2358-2362. doi: 10.1016/S1875-5372(16)30020-0
    [8]
    WANG Y L, ZHU Y L, HOU S, et al. Investigation on fatigue performance of cold expansion holes of 6061-T6 aluminum alloy[J]. International Journal of Fatigue, 2017, 95: 216-228. doi: 10.1016/j.ijfatigue.2016.10.030
    [9]
    王燕礼, 卞小芳, 符彬, 等. 光整滚光和开缝衬套挤压孔结构表面完整性及疲劳行为研究[J]. 表面技术, 2019, 48(9): 336-345. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201909042.htm

    WANG Y L, BIAN X F, FU B, et al. Surface integrity and fatigue behaviour of holes treated by finishing & burnishing and split sleeve cold expansion[J]. Surface Technology, 2019, 48(9): 336-345. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201909042.htm
    [10]
    王燕礼, 朱有利, 曹强, 等. 孔挤压强化技术研究进展与展望[J]. 航空学报, 2018, 39(2): 021336. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201802001.htm

    WANG Y L, ZHU Y L, CAO Q, et al. Progress and prospect of research on hole cold expansion technique[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 021336. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201802001.htm
    [11]
    张志贤, 张立新, 王凡. 压合衬套强化耳片的疲劳寿命评估[J]. 航空科学技术, 2022, 33(3): 97-105. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX202203013.htm

    ZHANG Z X, ZHANG L X, WANG F. Evaluation of fatigue life of lug with cold expanded bushing[J]. Aeronautical Science & Technology, 2022, 33(3): 97-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX202203013.htm
    [12]
    唐伟, 林忠亮, 吴保全, 等. 孔结构压合衬套冷挤压强化的疲劳寿命试验研究[J]. 航空精密制造技术, 2022, 58(4): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZJ202204003.htm

    TANG W, LIN Z L, WU B Q, et al. Test study on fatigue life of cold extrusion strengthening bushings for hole structure[J]. Aviation Precision Manufacturing Technology, 2022, 58(4): 11-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJZJ202204003.htm
    [13]
    杨广勇, 李萌, 宋颖刚, 等. 二次孔挤压强化对Ti1023钛合金孔疲劳性能影响[J]. 航空材料学报, 2016, 36(6): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201606012.htm

    YANG G Y, LI M, SONG Y G, et al. Effect of twice hole expansion on fatigue property of Ti1023 alloy[J]. Journal of Aeronautical Materials, 2016, 36(6): 68-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201606012.htm
    [14]
    姜廷宇, 王洋, 王鹏, 等. TB6钛合金孔二次挤压残余应力及疲劳寿命仿真研究[J]. 航空制造技术, 2021, 64(9): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ202109010.htm

    JIANG T Y, WANG Y, WANG P, et al. Simulation study on residual stress and fatigue life of TB6 titanium alloy hole after double cold expansion[J]. Aeronautical Manufacturing Technology, 2021, 64(9): 77-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ202109010.htm
    [15]
    罗学昆, 艾莹珺, 王欣, 等. 二次孔挤压强化对TB6钛合金疲劳性能的影响[J]. 航空材料学报, 2017, 37(6): 88-94. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201706015.htm

    LUO X K, AI Y J, WANG X, et al. Effect of double cold expansion of hole on fatigue property of TB6 titanium alloy[J]. Journal of Aeronautical Materials, 2017, 37(6): 88-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201706015.htm
    [16]
    Battelle Memorial Institute. Metallic materials properties development and standardization (MMPDS-09)[M]. America: Federal Aviation Administration, 2014.
    [17]
    王强, 赵勇, 倪孟龙. 高干涉量压合衬套强化铝合金孔结构的疲劳性能[J]. 机械工程材料, 2020, 44(7): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC202007011.htm

    WANG Q, ZHAO Y, NI M L. Fatigue properties of aluminum alloy hole structure strengthened by high interference fit bushing technique[J]. Materials for Mechanical Engineering, 2020, 44(7): 46-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC202007011.htm
    [18]
    ACHARD V, DAIDIE A, PAREDES M, et al. Optimization of the cold expansion process for titanium holes[J]. Advanced Engineering Materials, 2017, 19(6): 1500626.
    [19]
    于洋, 罗学昆, 刘勇军, 等. 孔挤压强化对FGH95合金室温及高温疲劳性能的影响[J]. 航空制造技术, 2019, 62(18): 76-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201918021.htm

    YU Y, LUO X K, LIU Y J, et al. Effect of hole cold expansion on fatigue property of FGH95 superalloy under room and high temperature[J]. Aeronautical Manufactur-ing Technology, 2019, 62(18): 76-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201918021.htm
    [20]
    BORREGO L P, COSTA J M, SILVA S, et al. Microstructure dependent fatigue crack growth in aged hardened aluminium alloys[J]. International Journal of Fatigue, 2004, 26(12): 1321-1331.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article views (771) PDF downloads(2) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return