Volume 43 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
YOU Xintian, DONG Yiwei, LIU Song, WU Chaolin, GUO Wen, GONG Yuhan. Calculation Method of Turbine Blade Cooling Efficiency Sensitivity Considering Deformation of Investment Casting[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1151-1157. doi: 10.13433/j.cnki.1003-8728.20240023
Citation: YOU Xintian, DONG Yiwei, LIU Song, WU Chaolin, GUO Wen, GONG Yuhan. Calculation Method of Turbine Blade Cooling Efficiency Sensitivity Considering Deformation of Investment Casting[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1151-1157. doi: 10.13433/j.cnki.1003-8728.20240023

Calculation Method of Turbine Blade Cooling Efficiency Sensitivity Considering Deformation of Investment Casting

doi: 10.13433/j.cnki.1003-8728.20240023
  • Received Date: 2023-10-07
  • Publish Date: 2024-07-25
  • The precision casting process results in a random deviation between the turbine blade geometry and the design, which has an uncertain effect on the blade air cooling efficiency. The uncertainty of turbine blade contour deviation is a minor disturbance problem in geometry. A model for deformation in the investment casting of the turbine blade is established by using the investment casting simulation. According to PIV and the numerical simulation, a realizable k-epsilon turbulence model for fluid-heat coupling calculation was established. A sensitivity calculation method of cooling efficiency considering blade deformation was established, and the sensitivity variation of the turbine blade air-cooling efficiency with the blow ratio was calculated. The results show that the greater the deformation of turbine blades is, the greater the loss of the original cooling efficiency. The overall average blade deformation of 0.25 mm makes the overall air-cooling efficiency loss of about 5%, and the local deformation such as 0.70 mm at the rear edge of the blade make the average air-cooling efficiency to be a loss of about 8%.
  • loading
  • [1]
    杨卫东, 张呈林, 王华明. 直升机旋翼气弹响应及桨毂载荷的参数灵敏度分析[J]. 南京航空航天大学学报, 1996, 28(6): 733-738.

    YANG W D, ZHANG C L, WANG H M. Efficient sensitivity analysis of aeroelastic response and hub loads for a helicopter rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1996, 28(6): 733-738. (in Chinese)
    [2]
    张宝振, 王汉平, 徐峰, 等. VSV调节机构的仿真提速和精度补偿措施[J]. 航空学报, 2022, 43(9): 226034.

    ZHANG B Z, WANG H P, XU F, et al. Simulation speed-up and accuracy compensation measures for adjusting mechanism of variable stator vane[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 226034. (in Chinese)
    [3]
    苏子献, 韩东, 崔钊. 基于灵敏度分析的直升机旋翼桨叶模型修正方法[J/OL]. 航空动力学报, 1-8. [2023-09-15]. https://doi.org/10.13224/j.cnki.jasp.20220869.

    SU Z X, HAN D, CUI Z. Helicopter rotor blade model updating method based on sensitivity analysis[J/OL]. Journal of Aerospace Power, 1-8. [2023-09-15]. https://doi.org/10.13224/j.cnki.jasp.20220869. (in Chinese)
    [4]
    张敏, 杨金广, 刘艳. 流体拓扑优化方法及其在叶轮机械中的应用[J]. 推进技术, 2021, 42(11): 2401-2416, doi: 10.13675/j.cnki.tjjs.200419.

    ZHANG M, YANG J G, LIU Y. Fluid topology optimization method and its application in turbomachinery[J]. Journal of Propulsion Technology, 2021, 42(11): 2401-2416, doi: 10.13675/j.cnki.tjjs.200419.(inChinese)
    [5]
    申秀丽, 张野, 龙丹, 等. 涡轮榫接结构多层次设计优化方法[J]. 航空动力学报, 2015, 30(12): 2824-2832, doi: 10.13224/j.cnki.jasp.2015.12.002.

    SHEN X L, ZHANG Y, LONG D, et al. Multi-level design and optimization of turbine joint structure[J]. Journal of Aerospace Power, 2015, 30(12): 2824-2832, doi: 10.13224/j.cnki.jasp.2015.12.002.(inChinese)
    [6]
    上官荣海, 郝艳华, 黄致建. 涡轮叶片异型冠结构优化设计[J]. 航空动力学报, 2018, 33(2): 313-319, doi: 10.13224/j.cnki.jasp.2018.02.008.

    SHANGGUAN R H, HAO Y H, HUANG Z J. Structural optimization design of turbine blade with special-shroud[J]. Journal of Aerospace Power, 2018, 33(2): 313-319, doi: 10.13224/j.cnki.jasp.2018.02.008.(inChinese)
    [7]
    罗佳奇, 朱亚路, 刘锋. 基于伴随方法的叶片加工偏差气动灵敏度分析[J]. 工程热物理学报, 2017, 38(3): 498-503.

    LUO J Q, ZHU Y L, LIU F. Aerodynamic sensitivity analysis for manufacturing variations of a turbine blade by an adjoint method[J]. Journal of Engineering Thermophysics, 2017, 38(3): 498-503. (in Chinese)
    [8]
    ZHOU L, FAN H Z, ZHANG X, et al. Investigation of effect of unsteady interaction on turbine blade film cooling[J]. Engineering Applications of Computational Fluid Mechanics, 2011, 5(4): 487-498. doi: 10.1080/19942060.2011.11015388
    [9]
    JESSEN W, SCHRÖDER W, KLAAS M. Evolution of jets effusing from inclined holes into crossflow[J]. International Journal of Heat and Fluid Flow, 2007, 28(6): 1312-1326. doi: 10.1016/j.ijheatfluidflow.2007.06.010
    [10]
    YAO Y, ZHANG J Z, WANG L P. Film cooling on a gas turbine blade suction side with converging slot-hole[J]. International Journal of Thermal Sciences, 2013, 65: 267-279. doi: 10.1016/j.ijthermalsci.2012.10.004
    [11]
    YAO Y, ZHANG J Z, TAN X M. Numerical study of film cooling from converging slot-hole on a gas turbine blade suction side[J]. International Communications in Heat and Mass Transfer, 2014, 52: 61-72. doi: 10.1016/j.icheatmasstransfer.2014.01.008
    [12]
    AL-ZURFI N, TURAN A. A numerical simulation of the effects of swirling flow on jet penetration in a rotating channel[J]. Flow, Turbulence and Combustion, 2015, 94(2): 415-438. doi: 10.1007/s10494-014-9586-9
    [13]
    FURLANI L, ARMELLINI A, CASARSA L. Rotational effects on the flow field inside a leading edge impingement cooling passage[J]. Experimental Thermal and Fluid Science, 2016, 76: 57-66. doi: 10.1016/j.expthermflusci.2016.03.004
    [14]
    BERKACHE A, DIZENE R. Numerical and experimental investigation of turbine blade film cooling[J]. Heat and Mass Transfer, 2017, 53(12): 3443-3458. doi: 10.1007/s00231-017-2062-z
    [15]
    LEE S, HWANG W, YEE K. Robust design optimization of a turbine blade film cooling hole affected by roughness and blockage[J]. International Journal of Thermal Sciences, 2018, 133: 216-229. doi: 10.1016/j.ijthermalsci.2018.07.012
    [16]
    ABDELMOHIMEN M A H, MOHIUDDIN A. Experimental investigation of film cooling from compound angle holes supplemented by secondary holes[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118678. doi: 10.1016/j.ijheatmasstransfer.2019.118678
    [17]
    WANG H C, TAO Z, ZHOU Z Y, et al. Experimental and numerical study of the film cooling performance of the suction side of a turbine blade under the rotating condition[J]. International Journal of Heat and Mass Transfer, 2019, 136: 436-448. doi: 10.1016/j.ijheatmasstransfer.2019.02.057
    [18]
    WANG H C, TAO Z, ZHOU Z Y, et al. An investigation for the turbine blade film cooling performance on the suction side tip region under rotating condition[J]. Applied Thermal Engineering, 2019, 150: 864-874. doi: 10.1016/j.applthermaleng.2018.12.102
    [19]
    FAWZY H, ZHENG Q, JIANG Y T, et al. Study of utilizing double lateral sub holes at different spanwise angles on blade film cooling effectiveness[J]. International Communications in Heat and Mass Transfer, 2020, 117: 104728. doi: 10.1016/j.icheatmasstransfer.2020.104728
    [20]
    VO D T, MAI T D, KIM B, et al. Numerical study on the influence of coolant temperature, pressure, and thermal barrier coating thickness on heat transfer in high-pressure blades[J]. International Journal of Heat and Mass Transfer, 2022, 189: 122715. doi: 10.1016/j.ijheatmasstransfer.2022.122715
    [21]
    张丹, 张卫红. 基于铸件热应力及变形的人工神经网络和遗传算法优化方法[J]. 航空学报, 2006, 27(4): 697-702.

    ZHANG D, ZHANG W H. Optimization of thermal stress and deformation of the casting during solidification by neural network and genetic algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4): 697-702. (in Chinese)
    [22]
    张丹, 张卫红, 朱继宏. 一种求解水平连铸中瞬态界面换热系数的新方法[J]. 特种铸造及有色合金, 2006, 26(3): 147-149.

    ZHANG D, ZHANG W H, ZHU J H. A new method for determining transient interfacial heat transfer coefficients in horizontal continuous casting[J]. Special Casting & Nonferrous Alloys, 2006, 26(3): 147-149. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views (767) PDF downloads(2) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return