Volume 43 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
FENG Qigao, GAN Zichen, MENG Fanjing. Mechanical Mechanisms of Shear Dilatancy and Force Chain Evolution in Abrasive Polishing Granular Flow[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1214-1221. doi: 10.13433/j.cnki.1003-8728.20230047
Citation: FENG Qigao, GAN Zichen, MENG Fanjing. Mechanical Mechanisms of Shear Dilatancy and Force Chain Evolution in Abrasive Polishing Granular Flow[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1214-1221. doi: 10.13433/j.cnki.1003-8728.20230047

Mechanical Mechanisms of Shear Dilatancy and Force Chain Evolution in Abrasive Polishing Granular Flow

doi: 10.13433/j.cnki.1003-8728.20230047
  • Received Date: 2022-05-17
  • Publish Date: 2024-07-25
  • The use of grinding and polishing as post processing can improve the surface quality of a workpiece. This paper mainly solves the problem of how to maximize the values of grinding and polishing processes. Since granular flow lubrication is suitable for extreme environment and environmental protection, the paper uses granular flow for grinding and polishing. A parallel plate model was established with the discrete element method. Granular flow was used as the third body to fill the gap between friction pairs, and the workpiece surface and tool were used as the first body to apply normal force and shear force to the granular flow system. The polishing process was numerically simulated. The results show that the shear dilatancy process of a single particle can be divided into rising stage, peak stage and falling stage. The weak chain direction in different stages is inclined to the x axis. In the rising stage, the weak chain direction is stable and can improve the machining efficiency and surface quality of the workpiece. When the load is large, the distribution law and the bearing rate of strong and weak force chains are stable. When the load is small, the shear dilatancy rate decreases and the strong chain direction is inclined to the x axis. This study numerically simulates the force chain and shear dilatancy that are not easily detected, thus providing a theoretical basis for the use of granular flow under the condition of grinding and polishing.
  • loading
  • [1]
    张宏君. 研磨、珩磨、抛光技术在机械制造中的应用[J]. 黑龙江科学, 2021, 12(8): 108-109. doi: 10.3969/j.issn.1674-8646.2021.08.047

    ZHANG H J. Application of grind, honing and polishing technology in machine manufacturing[J]. Heilongjiang Science, 2021, 12(8): 108-109. (in Chinese) doi: 10.3969/j.issn.1674-8646.2021.08.047
    [2]
    周光明. 铁素体不锈钢研磨工艺研发与应用[J]. 山西冶金, 2021, 44(4): 50-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYZ202104017.htm

    ZHOU G M. Development and application of ferrite stainless steel grinding process[J]. Shanxi Metallurgy, 2021, 44(4): 50-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDYZ202104017.htm
    [3]
    JIAO Z H, KANG R K, DONG Z G, et al. Microstructure characterization of W-Ni-Fe heavy alloys with optimized metallographic preparation method[J]. International Journal of Refractory Metals and Hard Materials, 2019, 80: 114-122. doi: 10.1016/j.ijrmhm.2019.01.011
    [4]
    罗桂海. 新型石材研磨抛光技术与基体特性研究[J]. 现代制造技术与装备, 2019(6): 13-14. doi: 10.3969/j.issn.1673-5587.2019.06.009

    LUO G H. Study on the characteristics of new stone grinding and polishing[J]. Modern Manufacturing Technology and Equipment, 2019(6): 13-14. (in Chinese) doi: 10.3969/j.issn.1673-5587.2019.06.009
    [5]
    史晓琳. 钨合金研磨抛光表面形貌形成机理及工艺研究[D]. 大连: 大连理工大学, 2020.

    SHI X L. Study on surface topography formation mechanism and process in lapping and polishing of tungsten alloy[D]. Dalian: Dalian University of Technology, 2020. (in Chinese)
    [6]
    郑锦华, 吴双, 魏新煦, 等. 研磨抛光表面微孔织构的形成[J]. 光学精密程, 2016, 24(4): 788-795. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201604014.htm

    ZHENG J H, WU S, WEI X X, et al. Formation of surface micro-pore texture by grinding and polishing[J]. Optical and Precision Engineering, 2016, 24(4): 788-795. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201604014.htm
    [7]
    刘宁, 朱永伟, 李学, 等. 硬脆材料平面研抛的材料去除机理研究进展[J]. 材料导报, 2022, 36(7): 21060121. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202207007.htm

    LIU N, ZHU Y W, LI X, et al. Research progress of material removal mechanism in plane lapping and polishing of hard-brittle materials[J]. Materials Reports, 2022, 36(7): 21060121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202207007.htm
    [8]
    KILIÇ V, GÖK A. Effect of different polishing systems on the surface roughness of various bulk-fill and Nano-filled resin-based composites: An atomic force microscopy and scanning electron microscopy study[J]. Microscopy Research and Technique, 2021, 84(9): 2058-2067. doi: 10.1002/jemt.23761
    [9]
    DE SOUZA R H, KAIZER M R, BORGES C E P, et al. Flexural strength and crystalline stability of a monolithic translucent zirconia subjected to grinding, polishing and thermal challenges[J]. Ceramics International, 2020, 46(16): 26168-26175. doi: 10.1016/j.ceramint.2020.07.114
    [10]
    LI J, TANG Y K, SONG L L, et al. Effect of FAP characteristics on fixed abrasive polishing of CaF2crystal[J]. International Journal of Nanomanufacturing, 2019, 15(3): 259-268. doi: 10.1504/IJNM.2019.100460
    [11]
    CADORE-RODRIGUES A C, MACHRY R V, ZUCUNI C P, et al. Grinding and polishing of the inner surface of monolithic simplified restorations made of zirconia polycrystals and lithium disilicate glass-ceramic: Effects on the load-bearing capacity under fatigue of the bonded restorations[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 124: 104833. doi: 10.1016/j.jmbbm.2021.104833
    [12]
    ZUCUNI C P, PEREIRA G K R, VALANDRO L F. Grinding, polishing and glazing of the occlusal surface do not affect the load-bearing capacity under fatigue and survival rates of bonded monolithic fully-stabilized zirconia simplified restorations[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103: 103528. doi: 10.1016/j.jmbbm.2019.103528
    [13]
    张桐齐, 岳晓斌, 雷大江, 等. 磨粒半径对金刚石研磨加工影响机制的仿真研究[J]. 金刚石与磨料磨具工程, 2021, 41(1): 89-94. https://www.cnki.com.cn/Article/CJFDTOTAL-JGSM202101016.htm

    ZHANG T Q, YUE X B, LEI D J, et al. Simulation study on influence mechanism of abrasive radius on diamond grinding[J]. Diamond & Abrasives Engineering, 2021, 41(1): 89-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGSM202101016.htm
    [14]
    李俊烨, 胡敬磊, 杨兆军, 等. 离散相磨粒粒径对磨粒流研抛共轨管质量的影响[J]. 吉林大学学报(工学版), 2018, 48(2): 492-499. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201802020.htm

    LI J Y, HU J L, YANG Z J, et al. Effect of the size of discrete phase abrasive particles on the abrasive flow polishing quality of common rail pipe[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(2): 492-499. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201802020.htm
    [15]
    XIAO X L, LI G X, MEI H J, et al. Polishing of silicon nitride ceramic balls by clustered magnetorheological finish[J]. Micromachines, 2020, 11(3): 304. doi: 10.3390/mi11030304
    [16]
    赵金鑫. 基于离散元法的卧式行星研磨机筒内介质仿真分析[D]. 鞍山: 辽宁科技大学, 2021.

    ZHAO J X. Simulation analysis of the medium in the cylinder of the horizontal planetary Grinder Based on the discrete element method[D]. Anshan: University of Science and Technology Liaoning, 2021. (in Chinese)
    [17]
    李奎. 磁粒研磨加工过程的离散元仿真分析[D]. 鞍山: 辽宁科技大学, 2021.

    LI K. Discrete element simulation analysis of magnetic abrasive finishing[D]. Anshan: University of Science and Technology Liaoning, 2021. (in Chinese)
    [18]
    XIU T X, WANG W, LIU K, et al. Characteristics of force chains in frictional interface during abrasive flow machining based on discrete element method[J]. Advances in Manufacturing, 2018, 6(4): 355-375. doi: 10.1007/s40436-018-0236-7
    [19]
    石崇, 张强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用[M]. 北京: 中国建筑工业出版社, 2018: 87-88.

    SHI C, ZHANG Q, WANG S N. Numerical simulation technology and application with particle flow code (PFC5.0)[M]. Beijing: China Architecture & Building Press, 2018: 87-88. (in Chinese)
    [20]
    IORDANOFF I, KHONSARI M M. Granular lubrication: toward an understanding of the transition between kinetic and quasi-fluid regime[J]. Journal of Tribology, 2004, 126(1): 137-145. doi: 10.1115/1.1633575
    [21]
    CUNDALL P A, STRACK A. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47
    [22]
    石崇, 徐卫亚. 颗粒流数值模拟技巧与实践[M]. 北京: 中国建筑工业出版社, 2015: 1-2.

    SHI C, XU W Y. Numerical simulation skills and practice of particle flow[M]. Beijing: China Architecture & Building Press, 2015: 1-2. (in Chinese)
    [23]
    江凯. 聚合物复合材料摩擦界面纵向迁移的数值模拟[D]. 合肥: 合肥工业大学, 2016.

    JIANG K. Numerical simulation of the vertical migration on the friction interface of polymeric composites[D]. Hefei: Hefei University of Technology, 2016. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article views (13) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return