Volume 43 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
CHEN Hongchao, MA Jun, WANG Xiaodong, HU Kai. Fluid-structure Interaction Modeling and Vibration Characteristics of Check Valve in High-pressure Diaphragm Pump[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1199-1206. doi: 10.13433/j.cnki.1003-8728.20230029
Citation: CHEN Hongchao, MA Jun, WANG Xiaodong, HU Kai. Fluid-structure Interaction Modeling and Vibration Characteristics of Check Valve in High-pressure Diaphragm Pump[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1199-1206. doi: 10.13433/j.cnki.1003-8728.20230029

Fluid-structure Interaction Modeling and Vibration Characteristics of Check Valve in High-pressure Diaphragm Pump

doi: 10.13433/j.cnki.1003-8728.20230029
  • Received Date: 2022-04-26
  • Publish Date: 2024-07-25
  • Aiming at the root causes of forced vibration and flow-induced vibration problems during the opening process of the check valve, a fluid-structure interaction simulation model with different opening degrees of 5%, 15%, 30%, 50%, 75% and 100% was constructed. The characteristics of the fluid and solid fields and the flow-exciting force exerted by the fluid on the valve spool were numerically analyzed, and the pressure cloud map of the flow field, the velocity vector cloud map, the peak frequency of the flow-induced vibration force, and mode shapes and natural frequencies of the valve core at each opening degree were obtained. The results show that: during the opening process of the check valve, there is a large pressure difference on both sides of the valve core, and the deformation area is mainly concentrated in the rubber pad. When the high-speed fluid in the valve cavity contacts the low-speed fluid, a vortex is formed by shearing, and the flow vortex changes periodically. The flow-exciting force generated by the vortex causes the spool vibration, and the peak frequency distribution of the flow-exciting force pulsation on the spool gradually increases and fluctuates more.
  • loading
  • [1]
    周成江. 矿浆管道输送系统的隔膜泵单向阀故障诊断研究[D]. 昆明: 昆明理工大学, 2020.

    ZHOU C J. Research on fault diagnosis of diaphragm pump check valve in slurry pipeline transportation system[D]. Kunming: Kunming University of Science and Technology, 2020. (in Chinese)
    [2]
    GUIDARA M A, TAIEB L H, TAÏEB E H. Determina- tion of natural frequencies in piping systems using transfer matrix method[C]//Proceedings of the Sixth Conference on Design and Modeling of Mechanical Systems on Design and Modeling of Mechanical Systems-Ⅱ. Hammamet, Tunisia: Springer, 2015: 765-774.
    [3]
    WU S, WEI X H. A new integrated numerical modeling approach toward piston diaphragm pump simulation: Three-dimensional model simplification and characteristic analysis[J]. Advances in Mechanical Engineering, 2019, 11(6): 1-11.
    [4]
    BAZSÓ C, HÓS C J. An experimental study on the stability of a direct spring loaded poppet relief valve[J]. Journal of Fluids and Structures, 2013, 42: 456-465. doi: 10.1016/j.jfluidstructs.2013.08.008
    [5]
    YI D Y, LU L, ZOU J, et al. Interactions between poppet vibration and cavitation in relief valve[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229(8): 1447-1461. doi: 10.1177/0954406214544304
    [6]
    张伟政, 赵鹏博, 张作丽, 等. 大口径蝶阀流固耦合特性及共振特性的研究[J]. 振动与冲击, 2021, 40(9): 278-284. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202109037.htm

    ZHANG W Z, ZHAO P B, ZHANG Z L, et al. Fluid-structure interaction and resonance characteristics of large diameter butterfly valve[J]. Journal of Vibration and Shock, 2021, 40(9): 278-284. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202109037.htm
    [7]
    闵为, 王东, 郑直, 等. 压力调节锥阀开启过程振动特性研究[J]. 振动与冲击, 2020, 39(18): 181-187. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202018024.htm

    MIN W, WANG D, ZHENG Z, et al. Vibration characteristics of a pressure regulating poppet valve during opening process[J]. Journal of Vibration and Shock, 2020, 39(18): 181-187. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202018024.htm
    [8]
    王雯, 傅卫平, 孔祥剑, 等. 单座式调节阀阀芯-阀杆系统流固耦合振动研究[J]. 农业机械学报, 2014, 45(5): 291-298. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201405045.htm

    WANG W, FU W P, KONG X J, et al. Research on fluid-structure coupling vibration of valve core-stem system in a single-type control valve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5): 291-298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201405045.htm
    [9]
    肖斌, 周玉龙, 高超, 等. 考虑流体附加质量的输流管道振动特性分析[J]. 振动与冲击, 2021, 40(15): 182-188. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202115023.htm

    XIAO B, ZHOU Y L, GAO C, et al. Analysis of vibration characteristics of pipeline with fluid added mass[J]. Journal of Vibration and Shock, 2021, 40(15): 182-188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202115023.htm
    [10]
    YU C G, YU Z B, LIU Z Z, et al. The research on vibration analysis of blow-down wind tunnel pressure regulating valves[J]. Applied Mechanics and Materials, 2013, 397-400: 621-624. doi: 10.4028/www.scientific.net/AMM.397-400.621
    [11]
    LI S X, ZHU L, WANG W B, et al. Analysis of thermal-fluid-structure coupling and resonance forecast for link butterfly valve under small opening[J]. Journal of Shanghai Jiaotong University (Science), 2019, 24(3): 341-350. doi: 10.1007/s12204-019-2061-y
    [12]
    王伟波, 郝娇山, 刘柏圻, 等. LNG超低温调节阀阀杆流激共振分析[J]. 振动与冲击, 2021, 40(3): 218-225. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202103030.htm

    WANG W B, HAO J S, LIU B Q, et al. Flow-inducedresonance analysis of valve stem for LNG ultra-low temperature control valve[J]. Journal of Vibration and Shock, 2021, 40(3): 218-225. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202103030.htm
    [13]
    王海芳, 任明, 王晨炜, 等. 单向阀阀芯的振动可靠性分析[J]. 中国工程机械学报, 2019, 17(1): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-GCHE201901018.htm

    WANG H F, REN M, WANG C W, et al. Vibration reliability analysis of the check valve spool[J]. Chinese Journal of Construction Machinery, 2019, 17(1): 85-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCHE201901018.htm
    [14]
    LISOWSKI E, FILO G. Analysis of a proportional control valve flow coefficient with the usage of a CFD method[J]. Flow Measurement and Instrumentation, 2017, 53: 269-278. doi: 10.1016/j.flowmeasinst.2016.12.009
    [15]
    徐海良, 周卓, 杨放琼, 等. 矿浆泵内转速对固液流体速度矢量分布的影响分析[J]. 机械科学与技术, 2017, 36(3): 329-334. doi: 10.13433/j.cnki.1003-8728.2017.0301

    XU H L, ZHOU Z, YANG F Q, et al. Analysis on influence of rotational speed on solid-liquid flow velocity vector distribution in slurry pump[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(3): 329-334. (in Chinese) doi: 10.13433/j.cnki.1003-8728.2017.0301
    [16]
    钱锦远, 吴嘉懿, 金志江. 调节阀振动特征的研究进展[J]. 振动与冲击, 2020, 39(11): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202011001.htm

    QIAN J Y, WU J Y, JIN Z J. Research progress on vibration characteristics of regulation valve[J]. Journal of Vibration and Shock, 2020, 39(11): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202011001.htm
    [17]
    CAO F, WANG Y. Modal analysis on fluid-structure interaction system of a large-scale gas control valve[J]. Advanced Materials Research, 2011, 305: 15-18. doi: 10.4028/www.scientific.net/AMR.305.15
    [18]
    朱红钧. ANSYS 14.5热流固耦合实战指南[M]. 北京: 人民邮电出版社, 2014.

    ZHU H J. ANSYS 14.5 heat-fluid-structure interaction practical guide[M]. Beijing: People Post Press, 2014. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article views (10) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return