Volume 43 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
CHEN Liangji, WU Wenyi, LI Huiying, TANG Jinmeng, WEI Zisen. Local Energy Smoothing and Singularity Avoidance Method of Five-axis Linear Toolpath[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1230-1237. doi: 10.13433/j.cnki.1003-8728.20230027
Citation: CHEN Liangji, WU Wenyi, LI Huiying, TANG Jinmeng, WEI Zisen. Local Energy Smoothing and Singularity Avoidance Method of Five-axis Linear Toolpath[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1230-1237. doi: 10.13433/j.cnki.1003-8728.20230027

Local Energy Smoothing and Singularity Avoidance Method of Five-axis Linear Toolpath

doi: 10.13433/j.cnki.1003-8728.20230027
  • Received Date: 2022-04-20
  • Publish Date: 2024-07-25
  • Aiming at the problems existing in the current five-axis machining that the translation axis at the corner of the toolpath decelerates excessively and the angle of the rotation axis changes drastically in the singular area. This paper takes the AC dual-table five-axis machine tool as the research object and proposes a path optimization method that satisfies the kinematics constraints of the machine tool. Firstly, the method takes the maximum allowable offset before and after the smoothing of the tool center point as a constraint, and uses the corner vector and the double-chord bow height for modeling to seek the local energy optimal solution at the corner of the micro-line segment. Then the cutter axis vector points inside and at the edges of the singular range are planned again so that the end of the vector just bypasses the singular region on the unit sphere; thus the original machining characteristics are greatly preserved. Finally, the optimization effect is evaluated by the trigonometric function acceleration and deceleration control algorithm. The simulation results show that the path optimization method improves the average feed rate by 10.64% while the fitting deviation and bow height error do not exceed the allowable values, and can effectively avoid the occurrence of singularities in machining. Consequently, the proposed method has high theoretical significance and practical application value in improving the efficiency and quality of five-axis machining.
  • loading
  • [1]
    杨敏, 赵现朝, 钟泽杉, 等. 复杂约束下的五轴数控系统自适应速度规划[J]. 机械工程学报, 2020, 56(11): 161-171. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202011019.htm

    YANG M, ZHAO X C, ZHONG Z S, et al. Adaptive velocity planning under complex constraints for 5-axis CNC systems[J]. Journal of Mechanical Engineering, 2020, 56(11): 161-171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202011019.htm
    [2]
    蔡安江, 赵丹, 叶向东, 等. 五轴加工奇异问题机理分析及其避免策略[J]. 机械科学与技术, 2017, 36(8): 1237-1243. doi: 10.13433/j.cnki.1003-8728.2017.0815

    CAI A J, ZHAO D, YE X D, et al. Mechanism analysis and avoiding strategy of singular problem in five-axis machining[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(8): 1237-1243. (in Chinese) doi: 10.13433/j.cnki.1003-8728.2017.0815
    [3]
    胡涞, 查俊, 朱永生, 等. 基础装备制造及高档集成数控机床研究进展[J]. 中国机械工程, 2021, 32(16): 1891-1903. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX202116001.htm

    HU L, ZHA J, ZHU Y S, et al. Research progresses of basic equipment manufacturing and high-grade integrated CNC machine tools[J]. China Mechanical Engineering, 2021, 32(16): 1891-1903. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX202116001.htm
    [4]
    王峰, 林浒, 刘峰, 等. 五轴加工奇异区域内的刀具路径优化[J]. 机械工程学报, 2011, 47(19): 174-180. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201119027.htm

    WANG F, LIN H, LIU F, et al. Tool path optimization of five-axis machining in singular area[J]. Journal of Mechanical Engineering, 2011, 47(19): 174-180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201119027.htm
    [5]
    罗明, 吴宝海, 李山, 等. 自由曲面五轴加工刀轴矢量的运动学优化方法[J]. 机械工程学报, 2009, 45(9): 158-163. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200909025.htm

    LUO M, WU B H, LI S, et al. Five-axis tool orientation optimization based on kinematical method[J]. Journal of Mechanical Engineering, 2009, 45(9): 158-163. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200909025.htm
    [6]
    BI Q Z, SHI J, WANG Y H, et al. Analytical curvature- continuous dual-Bézier corner transition for five-axis linear tool path[J]. International Journal of Machine Tools and Manufacture, 2015, 91: 96-108. doi: 10.1016/j.ijmachtools.2015.02.002
    [7]
    SHI J, BI Q Z, ZHU L M, et al. Corner rounding of linear five-axis tool path by dual PH curves blending[J]. International Journal of Machine Tools and Manufacture, 2015, 88: 223-236. doi: 10.1016/j.ijmachtools.2014.09.007
    [8]
    ZHANG J, ZHANG L Q, ZHANG K, et al. Double NURBS trajectory generation and synchronous interpolation for five- axis machining based on dual quaternion algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9-12): 2015-2025. doi: 10.1007/s00170-015-7723-9
    [9]
    TULSYAN S, ALTINTAS Y. Local toolpath smoothing for five-axis machine tools[J]. International Journal of Machine Tools and Manufacture, 2015, 96: 15-26. doi: 10.1016/j.ijmachtools.2015.04.014
    [10]
    YANG J X, YUEN A. An analytical local corner smoothing algorithm for five-axis CNC machining[J]. International Journal of Machine Tools and Manufacture, 2017, 123: 22-35. doi: 10.1016/j.ijmachtools.2017.07.007
    [11]
    蔡安江, 杜金健, 宋仁杰, 等. 五轴加工刀具轨迹NURBS插补技术的研究[J]. 机械科学与技术, 2017, 36(3): 402-408. doi: 10.13433/j.cnki.1003-8728.2017.0313

    CAI A J, DU J J, SONG R J, et al. Study on NURBS interpolation technology of five-axis machining tool path[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(3): 402-408. (in Chinese) doi: 10.13433/j.cnki.1003-8728.2017.0313
    [12]
    周续, 张定华, 吴宝海, 等. 非正交双转台五轴机床后置处理通用方法[J]. 机械工程学报, 2014, 50(15): 198-204. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201415029.htm

    ZHOU X, ZHANG D H, WU B H, et al. General method of post-processing for non-orthogonal five-axis machine tools with dual rotary tables[J]. Journal of Mechanical Engineering, 2014, 50(15): 198-204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201415029.htm
    [13]
    李冬冬, 张为民, 隋浩楠, 等. 五轴加工奇异问题分析与非线性误差控制[J]. 计算机集成制造系统, 2019, 25(5): 1112-1118. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201905010.htm

    LI D D, ZHANG W M, SUI H N, et al. Singularity analysis and non-linear error control of five-axis machining[J]. Computer Integrated Manufacturing Systems, 2019, 25(5): 1112-1118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201905010.htm
    [14]
    张立强, 张守军, 王宇晗. 基于对偶四元数的五轴等距双NURBS刀具路径规划[J]. 计算机集成制造系统, 2014, 20(1): 128-133. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201401017.htm

    ZHANG L Q, ZHANG S J, WANG Y H. Double NURBS five-axis tool path planning with equal distance based on dual quaternion[J]. Computer Integrated Manufacturing Systems, 2014, 20(1): 128-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201401017.htm
    [15]
    耿军晓, 李立伟, 李友刚, 等. 五轴联动加工中进给速度的控制算法[J]. 表面技术, 2018, 47(7): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201807003.htm

    GENG J X, LI L W, LI Y G, et al. Control algorithm of feed rate in five-axis linkage machining[J]. Surface Technology, 2018, 47(7): 8-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201807003.htm
    [16]
    李晓东, 宁涛, 陈志同. 改善机床运动的五轴刀轨光顺方法[J]. 北京航空航天大学学报, 2016, 42(2): 406-412. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201602026.htm

    LI X D, NING T, CHEN Z T. 5-Axis tool path smoothing to improve machine tool motion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(2): 406-412. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201602026.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article views (8) PDF downloads(2) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return