Volume 43 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
HUANG Wu, ZHENG Jinde, TONG Jinyu, PAN Haiyang, LIU Qingyun. AM-FM Operator Decomposition Method and Its Application in Rolling Bearing Fault Diagnosis[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1257-1265. doi: 10.13433/j.cnki.1003-8728.20230019
Citation: HUANG Wu, ZHENG Jinde, TONG Jinyu, PAN Haiyang, LIU Qingyun. AM-FM Operator Decomposition Method and Its Application in Rolling Bearing Fault Diagnosis[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1257-1265. doi: 10.13433/j.cnki.1003-8728.20230019

AM-FM Operator Decomposition Method and Its Application in Rolling Bearing Fault Diagnosis

doi: 10.13433/j.cnki.1003-8728.20230019
  • Received Date: 2022-04-08
  • Publish Date: 2024-07-25
  • The operator-based null-space tracking algorithm can realize the adaptive decomposition of complex signals, and it is a key step to construct and solve the signal model. A new signal decomposition model based on AFO is further established by defining a new AM-FM operator (AFO) which can completely annihilate AM-FM signals. In order to improve the robustness of parameters to signal decomposition, a nonparametric regularization (NPR) method is used to solve the constrained optimization problem of the above models, and an NPR-based adaptive signal decomposition method, called NPR-AFO, is proposed. This paper introduces the NPR-AFO method into mechanical fault diagnosis, and compares it with other existing decomposition methods through simulation and analysis of the measured data of local faults of rolling bearings. The results show that the proposed method can not only effectively extract fault features, but also the state failure characteristics are more obvious.
  • loading
  • [1]
    YING W M, ZHENG J D, PAN H Y, et al. Permutation entropy-based improved uniform phase empirical mode decomposition for mechanical fault diagnosis[J]. Digital Signal Processing, 2021, 117: 103167. doi: 10.1016/j.dsp.2021.103167
    [2]
    YING W M, TONG J Y, DONG Z L, et al. Composite multivariate multi-scale permutation entropy and Laplacian score based fault diagnosis of rolling bearing[J]. Entropy, 2022, 24(2): 160. doi: 10.3390/e24020160
    [3]
    HUANG N E, WU Z H. A review on Hilbert-Huang transform: method and its applications to geophysical studies[J]. Reviews of Geophysics, 2008, 46(2): RG2006.
    [4]
    PENG S L, HWANG W L. Adaptive signal decomposition based on local narrow band signals[J]. IEEE Transactions on Signal Processing, 2008, 56(7): 2669-2676. doi: 10.1109/TSP.2008.917360
    [5]
    DAUBECHIES I, LU J F, WU H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 243-261. doi: 10.1016/j.acha.2010.08.002
    [6]
    LIU Z L, XU K L, LI D, et al. Automatic mode extraction of ultrasonic guided waves using synchrosqueezed wavelet transform[J]. Ultrasonics, 2019, 99: 105948. doi: 10.1016/j.ultras.2019.105948
    [7]
    HU Y, TU X T, LI F C. High-order synchrosqueezing wavelet transform and application to planetary gearbox fault diagnosis[J]. Mechanical Systems and Signal Processing, 2019, 131: 126-151. doi: 10.1016/j.ymssp.2019.05.050
    [8]
    程军圣, 郑近德, 杨宇. 一种新的非平稳信号分析方法——局部特征尺度分解法[J]. 振动工程学报, 2012, 25(2): 215-220. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201202018.htm

    CHENG J S, ZHENG J D, YANG Y. A nonstationary signal analysis approach-the local characteristic-scale decomposition method[J]. Journal of Vibration Engineering, 2012, 25(2): 215-220. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201202018.htm
    [9]
    DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. doi: 10.1109/TSP.2013.2288675
    [10]
    HUANG Y, LIN J H, LIU Z C, et al. A modified scale-space guiding variational mode decomposition for high-speed railway bearing fault diagnosis[J]. Journal of Sound and Vibration, 2019, 444: 216-234. doi: 10.1016/j.jsv.2018.12.033
    [11]
    GILLES J. Empirical wavelet transform[J]. IEEE Transac-tions on Signal Processing, 2013, 61(16): 3999-4010. doi: 10.1109/TSP.2013.2265222
    [12]
    郑近德, 潘海洋, 程军圣, 等. 基于自适应经验傅里叶分解的机械故障诊断方法[J]. 机械工程学报, 2020, 56(9): 125-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202009015.htm

    ZHENG J D, PAN H Y, CHENG J S, et al. Adaptive empirical Fourier decomposition based mechanical fault diagnosis method[J]. Journal of Mechanical Engineering, 2020, 56(9): 125-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202009015.htm
    [13]
    PENG S L, HWANG W L. Null space pursuit: an operator-based approach to adaptive signal separation[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2475-2483. doi: 10.1109/TSP.2010.2041606
    [14]
    HU X Y, PENG S L, GUO B K, et al. Accurate AM-FM signal demodulation and separation using nonparametric regularization method[J]. Signal Processing, 2021, 186: 108131. doi: 10.1016/j.sigpro.2021.108131
    [15]
    HU X Y, PENG S L, HWANG W L. Operator based multicomponent AM-FM signal separation approach[C]//2011 IEEE International Workshop on Machine Learning for Signal Processing. Beijing: IEEE, 2011: 1-6.
    [16]
    HU X Y, PENG S L, HWANG W L. Multicomponent AM-FM signal separation and demodulation with null space pursuit[J]. Signal, Image and Video Processing, 2013, 7(6): 1093-1102. doi: 10.1007/s11760-012-0354-9
    [17]
    BIRGIN E G, MARTÍNEZ J M. Complexity and performance of an augmented Lagrangian algorithm[J]. Optimization Methods and Software, 2020, 35(5): 885-920. doi: 10.1080/10556788.2020.1746962
    [18]
    BIRGIN E G, MARTÍNEZ J M. Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization[J]. Computational Optimization and Applications, 2012, 51(3): 941-965. doi: 10.1007/s10589-011-9396-0
    [19]
    ANDREANI R, HAESER G, MITO L M, et al. On the best achievable quality of limit points of augmented Lagrangian schemes[J]. Numerical Algorithms, 2022, 90(2): 851-877. doi: 10.1007/s11075-021-01212-8
    [20]
    HUANG B H, MA C F. An iterative algorithm for the least Frobenius norm least squares solution of a class of generalized coupled Sylvester-transpose linear matrix equations[J]. Applied Mathematics and Computation, 2018, 328: 58-74. doi: 10.1016/j.amc.2018.01.020
    [21]
    AMIRI ROSHAN S, RAHMANI M. Consensus-based robust least-squares filter for multi-sensor systems[J]. International Journal of Adaptive Control and Signal Processing, 2022, 36(5): 1098-1115. doi: 10.1002/acs.3385
    [22]
    BOT R I, CSETNEK E R, NGUYEN D K. A proximal minimization algorithm for structured nonconvex and nonsmooth problems[J]. SIAM Journal on Optimization, 2019, 29(2): 1300-1328. doi: 10.1137/18M1190689
    [23]
    JIA Z H, HUANG J R, CAI X J. Proximal-like incremental aggregated gradient method with Bregman distance in weakly convex optimization problems[J]. Journal of Global Optimization, 2021, 80(4): 841-864. doi: 10.1007/s10898-021-01044-9
    [24]
    CARVALHO M L, IL'YASOV Y, SANTOS C A. Separating solutions of nonlinear problems using nonlinear generalized Rayleigh quotients[J]. Topological Methods in Nonlinear Analysis, 2021, 58(2): 453-480.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (13) PDF downloads(1) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return