Volume 43 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
LIU Hao, LAI Leijie. Inner Loop Damping and Iterative Learning Control of a Large Stroke Micro-positioning Stage Driven by Push-pull Electromagnetic Actuators[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1238-1243. doi: 10.13433/j.cnki.1003-8728.20230008
Citation: LIU Hao, LAI Leijie. Inner Loop Damping and Iterative Learning Control of a Large Stroke Micro-positioning Stage Driven by Push-pull Electromagnetic Actuators[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1238-1243. doi: 10.13433/j.cnki.1003-8728.20230008

Inner Loop Damping and Iterative Learning Control of a Large Stroke Micro-positioning Stage Driven by Push-pull Electromagnetic Actuators

doi: 10.13433/j.cnki.1003-8728.20230008
  • Received Date: 2022-02-19
  • Publish Date: 2024-07-25
  • In order to solve the problems of small driving force and low damping resonance of the flexure micro-positioning stage driven by voice coil motors (VCM), a push-pull mode of VCMs on both sides is adopted to enhance the driving force, and the inner loop damping controller combined with iterative learning control (ILC) method is used to realize the precise control of the stage. Firstly, a micro-positioning stage of compound parallelogram flexure mechanism driven by dual VCMs with complementary configuration is built. Secondly, an inner loop damping speed feedback controller is designed. Then, the inverse model ILC method is used to eliminate the periodic interference and error. Finally, the tracking experiment is carried out. The results show that when tracking the sine wave of 1 Hz and 2.5 Hz, the maximum error is reduced by 74.6% and 68.6% respectively compared with PI control, which meets the requirements of precise control of the micro-positioning stage.
  • loading
  • [1]
    莫喜先. 磁驱动纳米定位平台时滞控制方法及实验[D]. 上海: 上海交通大学, 2019.

    MO X X. Retarded control method and experiments on magnet-driven nanopositioning stage[D]. Shanghai: Shanghai Jiao Tong University, 2019. (in Chinese)
    [2]
    贺云波, 曾志强, 张昌. 迭代学习在音圈电机轨迹跟踪中的应用研究[J]. 机械设计与制造, 2020(4): 258-261.

    HE Y B, ZENG Z Q, ZHANG C. Study on the application of iterative learning in the trajectory tracking of voice coil motor[J]. Machinery Design & Manufacture, 2020(4): 258-261. (in Chinese)
    [3]
    王福超, 王昱棠, 田大鹏. 音圈快速反射镜的完全跟踪控制[J]. 光学精密工程, 2020, 28(9): 1997-2006.

    WANG F C, WANG Y T, TIAN D P. Perfect tracking control for fast-steering mirror driven by voice coil motor[J]. Optics and Precision Engineering, 2020, 28(9): 1997-2006. (in Chinese)
    [4]
    PARMAR G, BARTON K, AWTAR S. Large dynamic range nanopositioning using iterative learning control[J]. Precision Engineering, 2014, 38(1): 48-56. doi: 10.1016/j.precisioneng.2013.07.003
    [5]
    ITO S, TROPPMAIR S, LINDNER B, et al. Long-range fast nanopositioner using nonlinearities of hybrid reluctance actuator for energy efficiency[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 3051-3059. doi: 10.1109/TIE.2018.2842735
    [6]
    CAI K H, TIAN Y L, LIU X P, et al. Development and control methodologies for 2-DOF micro/nano positioning stage with high out-of-plane payload capacity[J]. Robotics and Computer-Integrated Manufacturing, 2019, 56: 95-105. doi: 10.1016/j.rcim.2018.08.007
    [7]
    OKYAY A, ERKORKMAZ K, KHAMESEE M B. Mechatronic design, actuator optimization, and control of a long stroke linear nano-positioner[J]. Precision Engineering, 2018, 52: 308-322. doi: 10.1016/j.precisioneng.2018.01.007
    [8]
    NIKOOIENEJAD N, ALIPOUR A, MAROUFI M, et al. Video-rate non-raster AFM imaging with cycloid trajectory[J]. IEEE Transactions on Control Systems Technology, 2020, 28(2): 436-447. doi: 10.1109/TCST.2018.2879939
    [9]
    吴文鹏, 王一帆, 胡贞. 微纳操纵成像迭代学习前馈反馈控制研究[J]. 机械科学与技术, 2022, 41(3): 414-420. doi: 10.13433/j.cnki.1003-8728.20200360

    WU W P, WANG Y F, HU Z. Exploring a feedforward and feedback control method for iterative learning by micro-nano manipulative imaging system[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(3): 414-420. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20200360
    [10]
    陈国真, 徐斯强, 刘品宽, 等. 大行程快速反射镜的结构设计及带宽特性[J]. 光学精密工程, 2020, 28(1): 90-101.

    CHEN G Z, XU S Q, LIU P K, et al. Structural design and bandwidth characteristic of a fast steering mirror with large travel range[J]. Optics and Precision Engineering, 2020, 28(1): 90-101. (in Chinese)
    [11]
    戴一帆, 段纬然, 王贵林, 等. 音圈电机驱动的快刀伺服系统建模与性能分析[J]. 国防科技大学学报, 2008, 30(1): 78-82.

    DAI Y F, DUAN W R, WANG G L, et al. Study on modeling and performance of a fast tool servo system driven by voice coil motor[J]. Journal of National University of Defense Technology, 2008, 30(1): 78-82. (in Chinese)
    [12]
    ZHANG Z, YANG X D, YAN P. Large dynamic range tracking of an XY compliant nanomanipulator with cross-axis coupling reduction[J]. Mechanical Systems and Signal Processing, 2019, 117: 757-770. doi: 10.1016/j.ymssp.2018.08.014
    [13]
    XU Q S. New flexure parallel-kinematic micropositioning system with large workspace[J]. IEEE Transactions on Robotics, 2012, 28(2): 478-491. doi: 10.1109/TRO.2011.2173853
    [14]
    TIAN Y L, CAI K H, ZHANG D W, et al. Development of a XYZ scanner for home-made atomic force microscope based on FPAA control[J]. Mechanical Systems and Signal Processing, 2019, 131: 222-242. doi: 10.1016/j.ymssp.2019.05.057
    [15]
    KANG S, LEE M G, CHOI Y M. Six degrees-of- freedom direct-driven nanopositioning stage using crab-leg flexures[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(2): 513-525. doi: 10.1109/TMECH.2020.2972301
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (8) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return