Volume 43 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
HE Zhijun, LI Junxia, LIU Shaowei, QIN Zhixiang. Roller Bearing Fault Diagnosis Combined CEEMD-VMD and Parameter Optimization SVM[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 402-408. doi: 10.13433/j.cnki.1003-8728.20220290
Citation: HE Zhijun, LI Junxia, LIU Shaowei, QIN Zhixiang. Roller Bearing Fault Diagnosis Combined CEEMD-VMD and Parameter Optimization SVM[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 402-408. doi: 10.13433/j.cnki.1003-8728.20220290

Roller Bearing Fault Diagnosis Combined CEEMD-VMD and Parameter Optimization SVM

doi: 10.13433/j.cnki.1003-8728.20220290
  • Received Date: 2022-04-29
  • Publish Date: 2024-03-25
  • In order to solve the difficulty in extracting fault features of roller bearings under complex working environment, a noise reduction method was proposed based on the combination of complementary ensemble empirical mode decomposition (CEEMD) and variational modal decomposition (VMD). Firstly, the collected signals are decomposed by CEEMD, and the components are screened and reconstructed according to the correlation coefficient and kurtosis to generate new signals. Then, VMD was used to decompose the new signal, and the intrinsic mode functions (IMF) were optimized based on the composite index of the combination of envelope entropy and envelope spectrum kurtosis. Finally, the corresponding features were extracted and input into salp swarm optimized support vector machine (SSO-SVM) model to complete the fault diagnosis. The experimental results show that the diagnosis accuracy of normal bearing, bearing inner ring fault and bearing outer ring fault is up to 97.78%. Compared with the single noise reduction method, this method can effectively improve the signal noise ratio of fault signal, and the noise reduction effect is obvious.
  • loading
  • [1]
    LIU X W, PEI D L, LODEWIJKS G, et al. Acoustic signal based fault detection on belt conveyor idlers using machine learning[J]. Advanced Powder Technology, 2020, 31(7): 2689-2698. doi: 10.1016/j.apt.2020.04.034
    [2]
    苏耀瑞. 远程带式输送机托辊非接触式故障识别方法研究[D]. 银川: 宁夏大学, 2021.

    SU Y R. Research on non-contact fault identification method of remote belt conveyor roller[D]. Yinchuan: Ningxia University, 2021. (in Chinese)
    [3]
    邱明权. 矿用带式输送机托辊健康监测方法研究[D]. 徐州: 中国矿业大学, 2018.

    QIU M Q. Research on health monitoring method of mine belt conveyor idler[D]. Xuzhou: China University of Mining and Technology, 2018. (in Chinese)
    [4]
    HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
    [5]
    WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. doi: 10.1142/S1793536909000047
    [6]
    YEH J R, SHIEH J S, HUANG N E. Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method[J]. Advances in Adaptive Data Analysis, 2010, 2(2): 135-156. doi: 10.1142/S1793536910000422
    [7]
    曹玲玲, 李晶, 彭镇, 等. 基于改进小波阈值降噪的滚动轴承故障诊断方法[J]. 振动工程学报, 2022, 35(2): 454-463.

    CAO L L, LI J, PENG Z, et al. Rolling bearing fault diagnosis method based on improved wavelet threshold denoising[J]. Journal of Vibration Engineering, 2022, 35(2): 454-463. (in Chinese)
    [8]
    DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. doi: 10.1109/TSP.2013.2288675
    [9]
    任朝晖, 于天壮, 丁东, 等. 基于VMD-DBN的滚动轴承故障诊断方法[J]. 东北大学学报(自然科学版), 2021, 42(8): 1105-1110.

    REN Z H, YU T Z, DING D, et al. Fault diagnosis method of rolling bearing based on VMD-DBN[J]. Journal of Northeastern University (Natural Science), 2021, 42(8): 1105-1110. (in Chinese)
    [10]
    郝家琦, 徐金海, 鲍超超, 等. 基于VMD与SVM的电梯鼓式制动器故障诊断研究[J]. 机电工程, 2022, 39(1): 112-119.

    HAO J Q, XU J H, BAO C C, et al. Fault diagnosis of elevator drum brake based on VMD and SVM[J]. Journal of Mechanical & Electrical Engineering, 2022, 39(1): 112-119. (in Chinese)
    [11]
    杜占涛, 纪爱敏, 陈曦晖, 等. 基于ISVD多级降噪和SVM的轴承故障诊断研究[J]. 机电工程, 2022, 39(5): 567-577.

    DU Z T, JI A M, CHEN X H, et al. Bearing fault diagnosis based on ISVD multi-stage noise reduction and SVM[J]. Journal of Mechanical and Electrical Engineering, 2022, 39(5): 567-577. (in Chinese)
    [12]
    周建民, 王发令, 张臣臣, 等. 基于特征优选和GA-SVM的滚动轴承智能评估方法[J]. 振动与冲击, 2021, 40(4): 227-234.

    ZHOU J M, WANG F L, ZHANG C C, et al. An intelligent method for rolling bearing evaluation using feature optimization and GA-SVM[J]. Journal of Vibration and Shock, 2021, 40(4): 227-234. (in Chinese)
    [13]
    李怡, 李焕锋, 刘自然. 基于CEEMDAN多尺度熵和SSA-SVM的滚动轴承故障诊断研究[J]. 机电工程, 2021, 38(5): 599-604.

    LI Y, LI H F, LIU Z R. Fault diagnosis of rolling bearing based on CEEMDAN multi-scale entropy and SSA-SVM[J]. Journal of Mechanical and Electrical Engineering, 2021, 38(5): 599-604. (in Chinese)
    [14]
    王振亚, 姚立纲, 戚晓利, 等. 参数优化变分模态分解与多域流形学习的行星齿轮箱故障诊断[J]. 振动与冲击, 2021, 40(1): 110-118.

    WANG Z Y, YAO L G, QI X L, et al. Fault diagnosis of planetary gearbox based on parameter optimized VMD and multi-domain manifold learning[J]. Journal of Vibration and Shock, 2021, 40(1): 110-118. (in Chinese)
    [15]
    唐贵基, 王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报, 2015, 49(5): 73-81. doi: 10.7652/xjtuxb201505012

    TANG G J, WANG X L. Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J]. Journal of Xi 'an Jiaotong University, 2015, 49(5): 73-81. (in Chinese) doi: 10.7652/xjtuxb201505012
    [16]
    MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163-191. doi: 10.1016/j.advengsoft.2017.07.002
    [17]
    王振亚, 姚立纲, 蔡永武, 等. 基于熵-流特征和樽海鞘群优化支持向量机的故障诊断方法[J]. 振动与冲击, 2021, 40(6): 107-114.

    WANG Z Y, YAO L G, CAI Y W, et al. Fault diagnosis method based on the entropy-manifold feature and SSO-SVM[J]. Journal of Vibration and Shock, 2021, 40(6): 107-114. (in Chinese)
    [18]
    乔美英, 刘宇翔, 兰建义. 基于VMD和马氏距离SVM的滚动轴承故障诊断[J]. 中山大学学报(自然科学版), 2019, 58(5): 8-16.

    QIAO M Y, LIU Y X, LAN J Y. Fault diagnosis method of rolling bearings based on VMD and mahalanobis distance SVM[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019, 58(5): 8-16. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article views (48) PDF downloads(2) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return