Volume 43 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
ZHANG Pan, LIU Yuhan, ZHANG Wei. Application of Improved Gray Wolf Algorithm in Trajectory Planning of Pallet Handling Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 394-401. doi: 10.13433/j.cnki.1003-8728.20220286
Citation: ZHANG Pan, LIU Yuhan, ZHANG Wei. Application of Improved Gray Wolf Algorithm in Trajectory Planning of Pallet Handling Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 394-401. doi: 10.13433/j.cnki.1003-8728.20220286

Application of Improved Gray Wolf Algorithm in Trajectory Planning of Pallet Handling Robot

doi: 10.13433/j.cnki.1003-8728.20220286
  • Received Date: 2022-03-29
  • Publish Date: 2024-03-25
  • In order to improve the running stability of the pallet handling robot, an optimal trajectory planning method for robot acceleration based on the improved gray wolf algorithm is proposed. Aiming at the problems of local convergence and insufficient optimization performance of gray wolf algorithm, the Logistic-Tent chaotic map is introduced to optimize the initial population; the differential optimization algorithm is introduced to improve the global search ability; the elimination evolution mechanism is introduced to optimize the population structure and improve the optimization performance in all-round way. Compared with the standard gray wolf algorithm and the particle swarm algorithm, simulation results show that improved gray wolf algorithm has better convergence speed and algorithm accuracy in different types of test functions. In the application of the trajectory planning of the handling robot, after the optimization of the algorithm, the maximum joint angular acceleration of the robot is reduced by 44.11%, which greatly improves the running stability.
  • loading
  • [1]
    NAGY Á, VAJK I. Nonconvex time-optimal trajectory planning for robot manipulators[J]. Journal of Dynamic Systems, Measurement, and Control, 2019, 141(11): 111007. doi: 10.1115/1.4044216
    KIM J J, LEE J J. Trajectory optimization with particle swarm optimization for manipulator motion planning[J]. IEEE Transactions on Industrial Informatics, 2015, 11(3): 620-631. doi: 10.1109/TII.2015.2416435
    XIDIAS E K. Time-optimal trajectory planning for hyper-redundant manipulators in 3D workspaces[J]. Robotics and Computer-integrated Manufacturing, 2018, 50: 286-298. doi: 10.1016/j.rcim.2017.10.005
    LIU C, CAO G H, QU Y Y, et al. An improved PSO algorithm for time-optimal trajectory planning of Delta robot in intelligent packaging[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(3): 1091-1099.
    MA J W, GAO S, YAN H T, et al. A new approach to time-optimal trajectory planning with torque and jerk limits for robot[J]. Robotics and Autonomous Systems, 2021, 140: 103744. doi: 10.1016/j.robot.2021.103744
    米根锁, 李明. 布谷鸟搜索算法在空间机械臂轨迹规划中的应用研究[J]. 机械科学与技术, 2018, 37(12): 1805-1810.

    MI G S, LI M. Applying cuckoo search algorithm to path planning of space manipulator[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(12): 1805-1810. (in Chinese)
    WU L, CHEN M S, XU J T, et al. Minimum-acceleration local modification method for planning tool orientations in 5-axis ball-end machining[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(7): 2271-2287.
    梁常春, 张晓东, 唐自新, 等. 空间机械臂关节故障引起速度突变的抑制[J]. 宇航学报, 2016, 37(1): 48-54.

    LIANG C C, ZHANG X D, TANG Z X, et al. Suppression of velocity mutation caused by space manipulator joint failure[J]. Journal of Astronautics, 2016, 37(1): 48-54. (in Chinese)
    MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. doi: 10.1016/j.advengsoft.2013.12.007
    LI Y, LIN X X, LIU J S. An improved gray wolf optimization algorithm to solve engineering problems[J]. Sustainability, 2021, 13(6): 3208. doi: 10.3390/su13063208
    NADIMI-SHAHRAKI M H, TAGHIAN S, MIRJALILI S. An improved grey wolf optimizer for solving engineering problems[J]. Expert Systems with Applications, 2021, 166: 113917. doi: 10.1016/j.eswa.2020.113917
    RODRÍGUEZ L, CASTILLO O, SORIA J. Grey wolf optimizer with dynamic adaptation of parameters using fuzzy logic[C]//2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver: IEEE, 2016: 3116-3123.
    左剑, 张程稳, 肖逸, 等. 基于灰狼优化算法的多机电力系统稳定器参数最优设计[J]. 电网技术, 2017, 41(9): 2987-2995.

    ZUO J, ZHANG C W, XIAO Y, et al. Multi-machine PSS parameter optimal tuning based on grey wolf optimizer algorithm[J]. Power System Technology, 2017, 41(9): 2987-2995. (in Chinese)
    MIRJALILI S, GANDOMI A H. Chaotic gravitational constants for the gravitational search algorithm[J]. Applied Soft Computing, 2017, 53: 407-419. doi: 10.1016/j.asoc.2017.01.008
    吕鑫, 慕晓冬, 张钧, 等. 混沌麻雀搜索优化算法[J]. 北京航空航天大学学报, 2021, 47(8): 1712-1720. doi: 10.13700/j.bh.1001-5965.2020.0298

    LYU X, MU X D, ZHANG J, et al. Chaos sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1712-1720. (in Chinese) doi: 10.13700/j.bh.1001-5965.2020.0298
    XU H L, QIAN X, ZHANG L. Study of ACO algorithm optimization based on improved tent chaotic mapping[J]. Journal of Information & Computational Science, 2012, 9(6): 1653-1660.
    ZHANG J Q, SANDERSON A C. JADE: adaptive differential evolution with optional external archive[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 945-958. doi: 10.1109/TEVC.2009.2014613
    曾念寅, 宋丹丹, 李寒, 等. 改进鲸鱼优化算法及涡轮盘结构优化[J]. 机械工程学报, 2021, 57(20): 254-265. doi: 10.3901/JME.2021.20.254

    ZENG N Y, SONG D D, LI H, et al. Improved whale optimization algorithm and turbine disk structure optimization[J]. Journal of Mechanical Engineering, 2021, 57(20): 254-265. (in Chinese) doi: 10.3901/JME.2021.20.254
    吴虎胜, 张凤鸣, 吴庐山. 一种新的群体智能算法-狼群算法[J]. 系统工程与电子技术, 2013, 35(11): 2430-2438.

    WU H S, ZHANG F M, WU L S. New swarm intelligence algorithm-wolf pack algorithm[J]. Systems Engineering and Electronics, 2013, 35(11): 2430-2438. (in Chinese)
    TENG Z J, LV J L, GUO L W. An improved hybrid grey wolf optimization algorithm[J]. Soft Computing, 2019, 23(15): 6617-6631. doi: 10.1007/s00500-018-3310-y
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article views (102) PDF downloads(5) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint