Volume 43 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
LI Bin, YAN Cheng. Measuring Thermal Radiation Temperature of Motorized Spindle's Thermal Compensation and Bearing Fault Diagnosis[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 483-489. doi: 10.13433/j.cnki.1003-8728.20220279
Citation: LI Bin, YAN Cheng. Measuring Thermal Radiation Temperature of Motorized Spindle's Thermal Compensation and Bearing Fault Diagnosis[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 483-489. doi: 10.13433/j.cnki.1003-8728.20220279

Measuring Thermal Radiation Temperature of Motorized Spindle's Thermal Compensation and Bearing Fault Diagnosis

doi: 10.13433/j.cnki.1003-8728.20220279
  • Received Date: 2022-03-13
  • Publish Date: 2024-03-25
  • To reduce the thermal deformation of a motorized spindle's shaft body and the common faults of important parts such as bearing in the processing center, a real-time thermal error compensation calculation method based on collecting the temperature change of the motorized spindle and the bearing's common fault diagnosis method were proposed. The thermal error compensation calculation method can improve the machining accuracy of the motorized spindle unit through processing the temperature measurement point data of the shaft body. The fault diagnosis method is used to set different thresholds for different temperature nodes. The threshold corresponds to the fault characteristics of a certain important part inside the motorized spindle unit. When the change in a temperature node exceeds the threshold, the alarm is given to diagnose the faults of a particular part.
  • loading
  • [1]
    JIANG Z Y, HUANG X Z, CHANG M X, et al. Thermal error prediction and reliability sensitivity analysis of motorized spindle based on Kriging model[J]. Engineering Failure Analysis, 2021, 127: 105558. doi: 10.1016/j.engfailanal.2021.105558
    [2]
    邝锦祥, 万正海, 李锻能. 高速电主轴热误差实验与预测建模[J]. 机床与液压, 2020, 48(10): 65-69.

    KUANG J X, WAN Z H, LI F N. Thermal error experiment and prediction modeling for high-speed motorized spindle[J]. Machine Tool & Hydraulics, 2020, 48(10): 65-69. (in Chinese)
    [3]
    沈志东. 基于ANSYS Workbench高速静压电主轴的热变形研究[J]. 农业装备与车辆工程, 2020, 58(12): 128-132. doi: 10.3969/j.issn.1673-3142.2020.12.029

    SHEN Z D. Research on thermal deformation of high-speed hydrostatic motorized spindle based on ANSYS workbench[J]. Agricultural Equipment and Vehicle Engineering, 2020, 58(12): 128-132. (in Chinese) doi: 10.3969/j.issn.1673-3142.2020.12.029
    [4]
    叶钰, 袁江, 邱自学, 等. 高速电主轴热误差正交试验设计与分析[J]. 制造技术与机床, 2021(3): 133-139.

    YE Y, YUAN J, QIU Z X, et al. Orthogonal experimental design and analysis of thermal error of high speed motorized spindle[J]. Manufacturing Technology & Machine Tool, 2021(3): 133-139. (in Chinese)
    [5]
    樊红卫, 张旭辉, 寇发荣, 等. 电主轴振动故障诊断与治愈研究进展[J]. 制造技术与机床, 2020(9): 56-59.

    FAN H W, ZHANG X H, KOU F R, et al. Research progress on vibration fault diagnosis and cure of motorized spindle[J]. Manufacturing Technology & Machine Tool, 2020(9): 56-59. (in Chinese)
    [6]
    李滨, 曾辉. 改进的深度置信网络在电主轴故障诊断中的应用[J]. 机械科学与技术, 2021, 40(7): 1051-1057.

    LI B, ZENG H. Application of improved deep belief network in electric spindle fault diagnosis[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(7): 1051-1057. (in Chinese)
    [7]
    邹纯标. 浅谈电主轴在数控加工中心的应用[J]. 科技创新与应用, 2013(28): 31.

    ZOU C B. talking about the application of electric spindle in NC machining center[J]. Technology Innovation and Application, 2013(28): 31. (in Chinese)
    [8]
    刘建平, 毕根凤. 电主轴电机的温度场建模研究[J]. 科技创新导报, 2019, 16(19): 117-118.

    LIU J P, BI G F. temperature field modeling of motorized spindle motor[J]. Science and Technology Innovation Herald, 2019, 16(19): 117-118. (in Chinese)
    [9]
    李贺. 电主轴温度预测模型建立与实验研究[D]. 哈尔滨: 哈尔滨理工大学, 2021.

    LI H. The establishment and experimental research of the temperature Prediction model of motorized spindle[D]. Harbin: Harbin University of Technology, 2021. (in Chinese)
    [10]
    陈洪容, 覃智广, 蒋世应, 等. 异步电主轴三维热误差多物理场耦合分析及计算[J]. 机械设计与制造, 2017(4): 152-155.

    CHEN H R, QIN Z G, JIANG S Y, et al. Multi-physics field coupling analysis and calculation of three-dimensional thermal error in asynchronous spindle motor[J]. Machinery Design & Manufacture, 2017(4): 152-155. (in Chinese)
    [11]
    罗哉, 陆艺, 郭斌, 等. 圆柱轴类零件径向与轴向热变形异常现象研究[J]. 中国机械工程, 2012, 23(12): 1479-1481.

    LUO Z, LU Y, GUO B, et al. Study on abnormal phenomena of radial and axial thermal deformation of cylindrical parts[J]. China Mechanical Engineering, 2012, 23(12): 1479-1481. (in Chinese)
    [12]
    俞谢琼. 多点温度测量系统及其在建筑方面的应用[J]. 森林工程, 2007, 23(2): 25-27.

    YU X Q. Multi-point temperature measurement system and its application in construction engineering[J]. Forest Engineering, 2007, 23(2): 25-27. (in Chinese)
    [13]
    段明德, 代京, 王献民. 卧式加工中心主轴热变形数值计算[J]. 矿山机械, 2018, 46(5): 64-68. doi: 10.3969/j.issn.1001-3954.2018.05.014

    DUAN M D, DAI J, WANG X M. Numerical calculation on thermal deformation of spindle in horizontal machining center[J]. Mining & Processing Equipment, 2018, 46(5): 64-68. (in Chinese) doi: 10.3969/j.issn.1001-3954.2018.05.014
    [14]
    李树森, 元月, 王也. 基于Matlab的径向小孔节流静压气体轴承静态特性分析[J]. 森林工程, 2016, 32(2): 49-52. doi: 10.3969/j.issn.1001-005X.2016.02.011

    LI S S, YUAN Y, WANG Y. Analysis of static characteristics of orifice radial static pressure gas bearing under high pressure based on matlab[J]. Forest Engineering, 2016, 32(2): 49-52. (in Chinese) doi: 10.3969/j.issn.1001-005X.2016.02.011
    [15]
    马旭, 白广臣, 邱杨. 1000MW汽轮发电机轴承温度高故障分析及处理[J]. 电力与能源, 2021, 42(2): 231-234.

    MA X, BAI G C, QIU Y. Fault analysis and treatment for high bearing temperature of 1000 MW turbo-generator[J]. Power Energy, 2021, 42(2): 231-234. (in Chinese)
    [16]
    于学华. 小波分析在信号检测、控制系统故障诊断中的应用浅析[J]. 森林工程, 2002, 18(5): 35-36.

    YU X H. Fault diagnosis and signal detection of control system using wavelet analysis[J]. Forest Engineering, 2002, 18(5): 35-36. (in Chinese)
    [17]
    邓召文, 杨泽宇, 张书乾, 等. 基于LabVIEW的汽车悬架无线动态数据采集系统[J]. 森林工程, 2018, 34(5): 106-113.

    DENG Z W, YANG Z Y, ZHANG S Q, et al. Design of the wireless dynamic data acquisition system for automobile suspension based on LabVIEW[J]. Forest Engineering, 2018, 34(5): 106-113. (in Chinese)
    [18]
    WANG Z N, ZHANG K, WANG Z, et al. Research on vibration of ceramic motorized spindle influenced by interference and thermal displacement[J]. Journal of Mechanical Science and Technology, 2021, 35(6): 2325-2335. doi: 10.1007/s12206-021-0505-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views (40) PDF downloads(3) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return