Volume 43 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
CAI Ling. Study on Influences of Manufacturing Process on Detail Fatigue Rating of Aluminum-lithium Alloy Structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 533-539. doi: 10.13433/j.cnki.1003-8728.20220276
Citation: CAI Ling. Study on Influences of Manufacturing Process on Detail Fatigue Rating of Aluminum-lithium Alloy Structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 533-539. doi: 10.13433/j.cnki.1003-8728.20220276

Study on Influences of Manufacturing Process on Detail Fatigue Rating of Aluminum-lithium Alloy Structure

doi: 10.13433/j.cnki.1003-8728.20220276
  • Received Date: 2022-03-07
  • Publish Date: 2024-03-25
  • Research the effects of the milling speed on U-notch details, and chamfer and feed rate on the opening details, and interference details on DFR in aluminum-lithium alloy. The results show that in a certain range of milling speed, there is an optimal milling speed; the hole edge chamfer can effectively reduce the stress concentration and improve the fatigue performance; interference fit riveting introduces the residual compressive stress into the hole wall, which has a certain strengthening effect on the hole connection, By increasing the amount of interference, the connection can reach the fatigue life equivalent to that of the whole material, which is no longer the weakest link in riveting parts.
  • loading
  • [1]
    李飘, 姚卫星. 铝锂合金材料发展及综合性能评述[J]. 航空工程进展, 2019, 10(1): 12-20.

    LI P, YAO W X. Review on the development and performance of aluminum-lithium alloys[J]. Advances in Aeronautical Science and Engineering, 2019, 10(1): 12-20. (in Chinese)
    [2]
    李红萍, 叶凌英, 邓运来, 等. 航空铝锂合金研究进展[J]. 中国材料进展, 2016, 35(11): 856-862.

    LI H P, YE L Y, DENG Y L, et al. Progress of aerocraft al-li alloys[J]. Materials China, 2016, 35(11): 856-862. (in Chinese)
    [3]
    郝敏, 王亮, 陈军洲, 等. 2060-T8E30铝锂合金平面各向异性和断裂破坏机制研究[J]. 稀有金属, 2021, 45(6): 641-649.

    HAO M, WANG L, CHEN J Z, et al. In-plane anisotropy and tensile failure mechanism of 2060-T8E30 Al-Li alloy sheet[J]. Chinese Journal of Rare Metals, 2021, 45(6): 641-649. (in Chinese)
    [4]
    陈铮. 铝锂合金的发展趋势、关键技术及应用[J]. 材料导报, 1999, 13(2): 1-3.

    CHEN Z. Developmental tendency, key technologies and applications of aluminum-lithium alloys[J]. Materials Review, 1999, 13(2): 1-3. (in Chinese)
    [5]
    陈铮. 铝锂合金疲劳行为及机理[J]. 航空学报, 1991, 12(11): A629-A634.

    CHEN Z. Behavior and mechanisms of fatigue for Al-Li alloys[J]. Acta Aeronautica et Astronautica Sinica, 1991, 12(11): A629-A634. (in Chinese)
    [6]
    赵要武, 孙秦, 杨庆雄. 铝锂合金疲劳裂纹的微观实验观察[J]. 西北工业大学学报, 1998, 16(4): 616-621.

    ZHAO Y W, SUN Q, YANG Q X. On micro crack and short crack in Al-Li alloy fatigue[J]. Journal of Northwestern Polytechnical University, 1998, 16(4): 616-621. (in Chinese)
    [7]
    张兴振, 李小强, 李东升, 等. 新型铝锂合金2060T8板材铣削试验研究[J]. 航空制造技术, 2015(3): 47-51. doi: 10.16080/j.issn1671-833x.2015.03.046

    ZHANG X Z, LI X Q, LI D S, et al. Experimental study on milling of new Al-Li alloy 2060T8 sheet[J]. Aeronautical Manufacturing Technology, 2015(3): 47-51. (in Chinese) doi: 10.16080/j.issn1671-833x.2015.03.046
    [8]
    马世玲, 董长双. 微铣削高温合金GH4169表面残余应力分析与预测优化[J]. 工具技术, 2018, 52(4): 79-82.

    MA S L, DONG C S. Analysis prediction and optimization of surface residual stress in micro-milling superalloy GH4169[J]. Tool Engineering, 2018, 52(4): 79-82. (in Chinese)
    [9]
    田冬凤, 韦红余, 陈文亮, 等. 铆接结构抗疲劳性的工艺影响分析[J]. 机械科学与技术, 2013, 32(9): 1332-1336.

    TIAN D F, WEI H Y, CHEN W L, et al. Effect of riveting process on fatigue resistance for riveted structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(9): 1332-1336. (in Chinese)
    [10]
    苏国胜, 刘战强, 万熠, 等. 高速切削中切削速度对工件材料力学性能和切屑形态的影响机理[J]. 中国科学:技术科学, 2012, 42(11): 1305-1317. doi: 10.1360/092011-533

    SU G S, LIU Z Q, WAN Y, et al. The mechanism of the influence of cutting speed on the mechanical properties of the workpiece material and the chip morphology in high-speed cutting[J]. Scientia Sinica (Technologica), 2012, 42(11): 1305-1317. (in Chinese) doi: 10.1360/092011-533
    [11]
    刘战强, 万熠, 艾兴. 高速铣削过程中表面粗糙度变化规律的试验研究[J]. 现代制造工程, 2002(3): 8-10. doi: 10.3969/j.issn.1671-3133.2002.03.002

    LIU Z Q, WAN Y, AI X. Experimental investigation of surface roughness in high-speed milling[J]. Modern Manufacturing Engineering, 2002(3): 8-10. (in Chinese) doi: 10.3969/j.issn.1671-3133.2002.03.002
    [12]
    American Society for Testing Materials. Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials:ASTM E466-07[S]. American:American Society for Testing Materials,2015.
    [13]
    郑晓玲. 民机结构耐久性与损伤容限设计手册(上册)[M]. 北京: 航空工业出版社, 2003: 330-335.

    ZHENG X L. Civil aircraft structural durability and damage tolerance design manual (Volume 1)[M]. Beijing: Aviation Industry Press, 2003: 330-335. (in Chinese)
    [14]
    中华人民共和国航空工业标准. 《金属材料细节疲劳额定强度截止值(DFRcutoff)试验方法》:HB7110-94[S].北京:中国航空工业总公司,1995.

    Aviation Industry Standards of the People's Republic of China. 《Metal material detail fatigue rated strength cut-off (DFRcutoff) test method》:HB7110-94[S]. Beijing: China Aviation Industry General Company,1995. (in Chinese)
    [15]
    杨悦, 余路, 蒋红宇, 等. 铆接干涉量对疲劳寿命的影响分析[J]. 机械制造与自动化, 2021, 50(2): 87-90. doi: 10.19344/j.cnki.issn1671-5276.2021.02.023

    YANG Y, YU L, JIANG H Y, et al. The effects of interference-fit level on fatigue[J]. Machine Building & Automation, 2021, 50(2): 87-90. (in Chinese) doi: 10.19344/j.cnki.issn1671-5276.2021.02.023
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(6)

    Article views (54) PDF downloads(1) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return