Volume 43 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
ZHU Hao, ZHAO Qinghai, ZHENG Qunfeng, NING Changjiu. Exploring Time-optimal Trajectory of Automatic Charging Manipulator with Improved Particle Swarm Optimization Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 423-429. doi: 10.13433/j.cnki.1003-8728.20220271
Citation: ZHU Hao, ZHAO Qinghai, ZHENG Qunfeng, NING Changjiu. Exploring Time-optimal Trajectory of Automatic Charging Manipulator with Improved Particle Swarm Optimization Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 423-429. doi: 10.13433/j.cnki.1003-8728.20220271

Exploring Time-optimal Trajectory of Automatic Charging Manipulator with Improved Particle Swarm Optimization Algorithm

doi: 10.13433/j.cnki.1003-8728.20220271
  • Received Date: 2022-03-05
  • Publish Date: 2024-03-25
  • A particle swarm optimization (PSO) algorithm based on the nonlinear dynamic learning factor was proposed to solve the time optimization problem in the joint space trajectory planning of a truss charging manipulator. The workspace was obtained through kinematic analysis, and the 3-5-3 polynomial interpolation was introduced for the trajectory planning. The shortest motion time was sought through combining velocity constraints with acceleration constraints. The convergence speed of the improved PSO algorithm was compared with that of the basic PSO algorithm, and the variation of motion time of each joint before and after optimization was analyzed. The simulation results show that the convergence performance of the improved PSO algorithm is faster than that of the basic PSO algorithm and that the overall motion time is shortened by about 33%, confirming the feasibility of the improved PSO algorithm.
  • loading
  • [1]
    郭勇, 赖广. 工业机器人关节空间轨迹规划及优化研究综述[J]. 机械传动, 2020, 44(2): 154-165.

    GUO Y, LAI G. Review of joint space trajectory planning and optimization for industrial robot[J]. Journal of Mechanical Transmission, 2020, 44(2): 154-165. (in Chinese)
    [2]
    庞飞. 工业机器人二次最优轨迹规划算法研究[D]. 沈阳: 东北大学, 2014: 3-4.

    PANG F. Research on quadratic optimal trajectory planning algorithm for industrial robot[D]. Shenyang: Northeastern University, 2014: 3-4. (in Chinese)
    [3]
    CHOI Y K, PARK J H, KIM H S, et al. Optimal trajectory planning and sliding mode control for robots using evolution strategy[J]. Robotica, 2000, 18(4): 423-428. doi: 10.1017/S0263574799002118
    [4]
    李黎, 尚俊云, 冯艳丽, 等. 关节型工业机器人轨迹规划研究综述[J]. 计算机工程与应用, 2018, 54(5): 36-50. doi: 10.3778/j.issn.1002-8331.1712-0116

    LI L, SHANG J Y, FENG Y L, et al. A Research of trajectory planning for articulated industrial robot: a review[J]. Computer Engineering and Applications, 2018, 54(5): 36-50. (in Chinese) doi: 10.3778/j.issn.1002-8331.1712-0116
    [5]
    王永琦, 江潇潇. 基于混合灰狼算法的机器人路径规划[J]. 计算机工程与科学, 2020, 42(7): 1294-1301. doi: 10.3969/j.issn.1007-130X.2020.07.019

    WANG Y Q, JIANG X X. Robot path planning using a hybrid grey wolf optimization algorithm[J]. Computational Engineering and Science, 2020, 42(7): 1294-1301. (in Chinese) doi: 10.3969/j.issn.1007-130X.2020.07.019
    [6]
    LAMINI C, BENHLIMA S, ELBEKRI A. Genetic algorithm based approach for autonomous mobile robot path planning[J]. Procedia Computer Science, 2018, 127: 180-189. doi: 10.1016/j.procs.2018.01.113
    [7]
    张震, 方群, 宋金丰, 等. 基于协同粒子群算法的航天器集群动态路径规划算法研究[J]. 西北工业大学学报, 2021, 39(6): 1222-1232. doi: 10.3969/j.issn.1000-2758.2021.06.007

    ZHANG Z, FANG Q, SONG J F, et al. Research on dynamic path planning algorithm of spacecraft cluster based on cooperative particle swarm algorithm[J]. Journal of Northwestern Polytechnical University, 2021, 39(6): 1222-1232. (in Chinese) doi: 10.3969/j.issn.1000-2758.2021.06.007
    [8]
    LUO Q, WANG H B, ZHENG Y, et al. Research on path planning of mobile robot based on improved ant colony algorithm[J]. Neural Computing and Applications, 2020, 32(6): 1555-1566. doi: 10.1007/s00521-019-04172-2
    [9]
    田兴华, 张纪会, 李阳. 基于混沌映射的自适应退火型粒子群算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 45-54.

    TIAN X H, ZHANG J H, LI Y. An adaptive annealing particle swarm optimization based on chaotic mapping[J]. Complex Systems and Complexity Science, 2020, 17(1): 45-54. (in Chinese)
    [10]
    陈波, 刘有余. 双种群粒子群算法的时间最优轨迹规划研究[J]. 机械科学与技术, 2022, 41(10): 1530-1535.

    CHEN B, LIU Y Y. Research on time optimal trajectory planning for double-population particle swarm optimization algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(10): 1530-1535. (in Chinese)
    [11]
    巫光福, 万路萍. 粒子群算法优化机器人路径规划的研究[J]. 机械科学与技术, 2022, 41(11): 1759-1764.

    WU G F, WAN L P. Research on improved particle swarm optimization algorithm for robot path planning[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(11): 1759-1764. (in Chinese)
    [12]
    李东洁, 邱江艳, 尤波. 一种机器人轨迹规划的优化算法[J]. 电机与控制学报, 2009, 13(1): 123-127. doi: 10.3969/j.issn.1007-449X.2009.01.023

    LI D J, QIU J Y, YOU B. Optimal algorithm for trajectory planning of the robot[J]. Electric Machines and Control, 2009, 13(1): 123-127. (in Chinese) doi: 10.3969/j.issn.1007-449X.2009.01.023
    [13]
    邓伟, 张其万, 刘平, 等. 基于双种群遗传混沌优化算法的最优时间轨迹规划[J]. 计算机集成制造系统, 2018, 24(1): 101-106.

    DENG W, ZHANG Q W, LIU P, et al. Optimal time trajectory planning based on dual population genetic and chaotic optimization algorithm[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 101-106. (in Chinese)
    [14]
    JIN X, KANG J F, ZHANG J J, et al. Trajectory planning of a six-DOF robot based on a hybrid optimization algorithm[C]//Proceeding of the 9th International Symposium on Computational Intelligence and Design. Hangzhou, China: IEEE, 2016: 148-151.
    [15]
    臧继元, 刁燕, 陈勇. 七自由度微创手术机器人运动学及其工作空间分析[J]. 机械设计与制造, 2010(2): 181-183. doi: 10.3969/j.issn.1001-3997.2010.02.073

    ZANG J Y, DIAO Y, CHEN Y. The kinematics and workspace analysis of a seven DOF minimally invasive surgical robot[J]. Machinery Design & Manufacture, 2010(2): 181-183. (in Chinese) doi: 10.3969/j.issn.1001-3997.2010.02.073
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views (77) PDF downloads(5) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return