Volume 43 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
CHEN Wu, HAN Fei, ZHOU Yi. Numerical Simulation of Turbulent Flows and Induced Aerodynamic Noise Around Side-by-side Square Cylinders with Multiscale and Regular Arrangements[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 380-393. doi: 10.13433/j.cnki.1003-8728.20220268
Citation: CHEN Wu, HAN Fei, ZHOU Yi. Numerical Simulation of Turbulent Flows and Induced Aerodynamic Noise Around Side-by-side Square Cylinders with Multiscale and Regular Arrangements[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 380-393. doi: 10.13433/j.cnki.1003-8728.20220268

Numerical Simulation of Turbulent Flows and Induced Aerodynamic Noise Around Side-by-side Square Cylinders with Multiscale and Regular Arrangements

doi: 10.13433/j.cnki.1003-8728.20220268
  • Received Date: 2022-02-24
  • Publish Date: 2024-03-25
  • In this study, large eddy simulations with the usage of the K-FWH equation are performed to numerically simulate turbulent flows behind two different kind of cylinder arrays (regular and multiscale) with the same blocking ratio. The large eddy simulation methods used in this paper are verified by the previous single-cylinder flow experiments and numerical results. The results show that the numerical method used in this paper can better predict the turbulent characteristics of the flow around the cylinder. Numerical results show that at the Reynolds number of 104, the mean drag coefficient of square cylinders with regular arrangement is approximately equal to that of the square cylinders with multiscale arrangement. Vortex shedding behavior in the case of regular arrangement present an obvious phenomenon of "phase locking", while the vortex shedding in the case of multiscale arrangement is rather chaotic. The far-field distributions of the sound pressure level of the two flow fields are approximately the same. The induced noises in case with the regular array also exhibit similar "phase locking" behavior. In contrast, multiscale arrangement can modify the distribution the noise spectrum and transfer the power from the low-frequency region to the high-frequency region.
  • loading
  • [1]
    梁勇, 陈迎春, 赵鲲, 等. 锯齿单元对起落架/舱体耦合噪声抑制试验[J]. 航空学报, 2019, 40(8): 122932.

    LIANG Y, CHEN Y C, ZHAO K, et al. Test on suppression of aircraft landing gear/bay coupling noise using sawtooth spoiler[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122932. (in Chinese)
    [2]
    徐国华, 史勇杰, 招启军, 等. 直升机旋翼气动噪声的研究新进展[J]. 航空学报, 2017, 38(7): 520991.

    XU G H, SHI Y J, ZHAO Q J, et al. New research progress in helicopter rotor aerodynamic noise[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 520991. (in Chinese)
    [3]
    ZHOU Y, ALAM M M. Wake of two interacting circular cylinders: a review[J]. International Journal of Heat and Fluid Flow, 2016, 62: 510-537. doi: 10.1016/j.ijheatfluidflow.2016.08.008
    [4]
    BLAKE W K. Mechanics of flow-induced sound and vibration, volume 1: general concepts and elementary sources[M]. San Diego: Academic Press, 2017.
    [5]
    WILLIAMSON C H K. Vortex dynamics in the cylinder wake[J]. Annual Review of Fluid Mechanics, 1996, 28: 477-539. doi: 10.1146/annurev.fl.28.010196.002401
    [6]
    ISHIGAI S, NISHIKAWA E, NISHIMURA K, et al. Experimental study on structure of gas flow in tube banks with tube axes normal to flow: Part 1, Karman vortex flow from two tubes at various spacings[J]. Bulletin of JSME, 1972, 15(86): 949-956. doi: 10.1299/jsme1958.15.949
    [7]
    AUGER J L, COUTANCEAU J. On the complex structure of the downstream flow of cylindrical tube rows at various spacings[J]. Mechanics Research Communications, 1978, 5(5): 297-302. doi: 10.1016/0093-6413(78)90026-5
    [8]
    ZHENG Q M, ALAM M M. Intrinsic features of flow past three square prisms in side-by-side arrangement[J]. Journal of Fluid Mechanics, 2017, 826: 996-1033. doi: 10.1017/jfm.2017.378
    [9]
    刘欢. 等边布置三方柱绕流漩涡相互作用机制的数值分析[J]. 天津城建大学学报, 2018, 24(1): 33-39.

    LIU H. Numerical study of vortex interactions in flow around three equispaced square cylinders[J]. Journal of Tianjin Chengjian University, 2018, 24(1): 33-39. (in Chinese)
    [10]
    XU W H, ZHANG S H, LIU B, et al. An experimental study on flow-induced vibration of three and four side-by-side long flexible cylinders[J]. Ocean Engineering, 2018, 169: 492-510. doi: 10.1016/j.oceaneng.2018.09.038
    [11]
    INOUE O, IWAKAMI W, HATAKEYAMA N. Aeolian tones radiated from flow past two square cylinders in a side-by-side arrangement[J]. Physics of Fluids, 2006, 18(4): 046104. doi: 10.1063/1.2191847
    [12]
    INOUE O, SUZUKI Y. Beat of sound generated by flow past three side-by-side square cylinders[J]. Physics of Fluids, 2007, 19(4): 048102. doi: 10.1063/1.2714080
    [13]
    杜炳鑫, 张文平, 明平剑. 基于流声分解法的串列和并列双圆柱绕流噪声数值模拟[J]. 船舶力学, 2019, 23(9): 1122-1138. doi: 10.3969/j.issn.1007-7294.2019.09.009

    DU B X, ZHANG W P, MING P J. Numerical simulation of flow-induced noise of two circular cylinders in tandem and side-by-side arrangements using a viscous/acoustic splitting method[J]. Journal of Ship Mechanics, 2019, 23(9): 1122-1138. (in Chinese) doi: 10.3969/j.issn.1007-7294.2019.09.009
    [14]
    高威, 陈国勇. 串列双圆柱绕流的气动噪声特性分析[J]. 计算机辅助工程, 2018, 27(4): 41-46.

    GAO W, CHEN G Y. Characteristic analysis on aerodynamical noise of flow around tandem double cylinders[J]. Computer Aided Engineering, 2018, 27(4): 41-46. (in Chinese)
    [15]
    余雷, 宋文萍, 韩忠华, 等. 基于混合RANS/LES方法与FW-H方程的气动声学计算研究[J]. 航空学报, 2013, 34(8): 1795-1805.

    YU L, SONG W P, HAN Z H, et al. Aeroacoustic noise prediction using hybrid RANS/LES method and FW-H equation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1795-1805. (in Chinese)
    [16]
    ZHOU Y, NAGATA K, SAKAI Y, et al. Extreme events and non-Kolmogorov −5/3 spectra in turbulent flows behind two side-by-side square cylinders[J]. Journal of Fluid Mechanics, 2019, 874: 677-698. doi: 10.1017/jfm.2019.456
    [17]
    KEYLOCK C J, NISHIMURA K, NEMOTO M, et al. The flow structure in the wake of a fractal fence and the absence of an “inertial regime”[J]. Environmental Fluid Mechanics, 2012, 12(3): 227-250. doi: 10.1007/s10652-011-9233-0
    [18]
    LAIZET S, NEDIĆ J, VASSILICOS J C. The spatial origin of −5/3 spectra in grid-generated turbulence[J]. Physics of Fluids, 2015, 27(6): 065115. doi: 10.1063/1.4923042
    [19]
    LAIZET S, VASSILICOS J C. Stirring and scalar transfer by grid-generated turbulence in the presence of a mean scalar gradient[J]. Journal of Fluid Mechanics, 2015, 764: 52-75. doi: 10.1017/jfm.2014.695
    [20]
    NAGATA K, SAKAI Y, INABA T, et al. Turbulence structure and turbulence kinetic energy transport in multiscale/fractal-generated turbulence[J]. Physics of Fluids, 2013, 25(6): 065102. doi: 10.1063/1.4811402
    [21]
    ZHOU Y, NAGATA K, SAKAI Y, et al. Relevance of turbulence behind the single square grid to turbulence generated by regular-and multiscale-grids[J]. Physics of Fluids, 2014, 26(7): 075105. doi: 10.1063/1.4890746
    [22]
    DAIRAY T, OBLIGADO M, VASSILICOS J C. Non-equilibrium scaling laws in axisymmetric turbulent wakes[J]. Journal of Fluid Mechanics, 2015, 781: 166-195. doi: 10.1017/jfm.2015.493
    [23]
    ZHOU Y, VASSILICOS J C. Related self-similar statistics of the turbulent/non-turbulent interface and the turbulence dissipation[J]. Journal of Fluid Mechanics, 2017, 821: 440-457. doi: 10.1017/jfm.2017.262
    [24]
    BAŞBUĞ S, PAPADAKIS G, VASSILICOS J C. Reduced power consumption in stirred vessels by means of fractal impellers[J]. AIChE Journal, 2018, 64(4): 1485-1499. doi: 10.1002/aic.16096
    [25]
    BAŞBUĞ S, PAPADAKIS G, VASSILICOS J C. Reduced mixing time in stirred vessels by means of irregular impellers[J]. Physical Review Fluids, 2018, 3(8): 084502. doi: 10.1103/PhysRevFluids.3.084502
    [26]
    LAIZET S, VASSILICOS J C. Fractal space-scale unfolding mechanism for energy-efficient turbulent mixing[J]. Physical Review E, 2012, 86(4): 046302. doi: 10.1103/PhysRevE.86.046302
    [27]
    NEDIĆ J, GANAPATHISUBRAMANI B, VASSILICOS J C, et al. Aeroacoustic performance of fractal spoilers[J]. AIAA Journal, 2012, 50(12): 2695-2710. doi: 10.2514/1.J051387
    [28]
    NEDIĆ J, VASSILICOS J C. Vortex shedding and aerodynamic performance of airfoil with multiscale trailing-edge modifications[J]. AIAA Journal, 2015, 53(11): 3240-3250. doi: 10.2514/1.J053834
    [29]
    GEHLERT P P, CAFIERO G, VASSILICOS J C. Effect of fractal endplates on the wingtip vortex[C]//2018 AIAA Aerospace Sciences Meeting. Kissimmee: AIAA, 2018: 1796.
    [30]
    BAJ P, BUXTON O R H. Interscale energy transfer in the merger of wakes of a multiscale array of rectangular cylinders[J]. Physical Review Fluids, 2017, 2(11): 114607. doi: 10.1103/PhysRevFluids.2.114607
    [31]
    TAO S C, ZHOU Y. Turbulent flows around side-by-side cylinders with regular and multiscale arrangements[J]. Physical Review Fluids, 2019, 4(12): 124602. doi: 10.1103/PhysRevFluids.4.124602
    [32]
    NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow, Turbulence and Combustion, 1999, 62(3): 183-200. doi: 10.1023/A:1009995426001
    [33]
    FRANCESCANTONIO P D. A new boundary integral formulation for the prediction of sound radiation[J]. Journal of Sound and Vibration, 1997, 202(4): 491-509. doi: 10.1006/jsvi.1996.0843
    [34]
    张强. 气动声学基础[M]. 北京: 国防工业出版社, 2012: 150-165.

    ZHANG Q. Basics of aeroacoustics[M]. Beijing: National Defense Industry Press, 2012: 150-165. (in Chinese)
    [35]
    PORTELA F A, PAPADAKIS G, VASSILICOS J C. The turbulence cascade in the near wake of a square prism[J]. Journal of Fluid Mechanics, 2017, 825: 315-352. doi: 10.1017/jfm.2017.390
    [36]
    LEE M B, KIM G C. A study on the near wake of a square cylinder using particle image velocimetry (I)-mean flow field[J]. Transactions of the Korean Society of Mechanical Engineers B, 2001, 25(10): 1408-1416.
    [37]
    HU J C, ZHOU Y, DALTON C. Effects of the corner radius on the near wake of a square prism[J]. Experiments in Fluids, 2006, 40(1): 106-118. doi: 10.1007/s00348-005-0052-2
    [38]
    DURÃO D F G, HEITOR M V, PEREIRA J C F. Measurements of turbulent and periodic flows around a square cross-section cylinder[J]. Experiments in Fluids, 1988, 6(5): 298-304. doi: 10.1007/BF00538820
    [39]
    LYN D A, EINAV S, RODI W, et al. A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder[J]. Journal of Fluid Mechanics, 1995, 304: 285-319. doi: 10.1017/S0022112095004435
    [40]
    SOHANKAR A, NORBERG C, DAVIDSON L. Simulation of three-dimensional flow around a square cylinder at moderate Reynolds numbers[J]. Physics of Fluids, 1999, 11(2): 288-306. doi: 10.1063/1.869879
    [41]
    TRIAS F X, GOROBETS A, OLIVA A. Turbulent flow around a square cylinder at Reynolds number 22, 000: A DNS study[J]. Computers & Fluids, 2015, 123: 87-98.
    [42]
    DAVIS R W, MOORE E F, PURTELL L P. A numerical-experimental study of confined flow around rectangular cylinders[J]. Physics of Fluids, 1984, 27(1): 46-59. doi: 10.1063/1.864486
    [43]
    CHENG C M, LU P C, CHEN R H. Wind loads on square cylinder in homogeneous turbulent flows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41(1-3): 739-749. doi: 10.1016/0167-6105(92)90490-2
    [44]
    NORBERG C. Flow around rectangular cylinders: Pressure forces and wake frequencies[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49(1-3): 187-196. doi: 10.1016/0167-6105(93)90014-F
    [45]
    SAHA A K, MURALIDHAR K, BISWAS G. Experimental study of flow past a square cylinder at high Reynolds numbers[J]. Experiments in Fluids, 2000, 29(6): 553-563. doi: 10.1007/s003480000123
    [46]
    CHEN J M, LIU C H. Vortex shedding and surface pressures on a square cylinder at incidence to a uniform air stream[J]. International Journal of Heat and Fluid Flow, 1999, 20(6): 592-597. doi: 10.1016/S0142-727X(99)00047-8
    [47]
    BEARMAN P W, OBASAJU E D. An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders[J]. Journal of Fluid Mechanics, 1982, 119: 297-321. doi: 10.1017/S0022112082001360
    [48]
    MIZOTA T, OKAJIMA A. Experimental studies of time mean flows around rectangular prisms[J]. Proceedings of the Japan Society of Civil Engineers, 1981, 1981(312): 39-47. doi: 10.2208/jscej1969.1981.312_39
    [49]
    陈武, 周毅. 基于K-FWH声比拟方法的串列双圆柱气动噪声研究[J]. 北京航空航天大学学报, 2021, 47(10): 2118-2128.

    CHEN W, ZHOU Y. Investigation on aeroacoustic of tandem double cylinders by K-FWH acoustic analogy method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2118-2128. (in Chinese)
    [50]
    LOCKARD D. Summary of the tandem cylinder solutions from the benchmark problems for airframe noise computations-I workshop[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando: AIAA, 2011: 353.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(24)  / Tables(1)

    Article views (150) PDF downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return