Volume 43 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
YU Baojun, WU Shuang, XIN Chenglei, JIA Ru, GU Yan. Study on Ultrasonic Vibration Assisted Polishing Force and Surface Quality of CoCrMo Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 497-503. doi: 10.13433/j.cnki.1003-8728.20220248
Citation: YU Baojun, WU Shuang, XIN Chenglei, JIA Ru, GU Yan. Study on Ultrasonic Vibration Assisted Polishing Force and Surface Quality of CoCrMo Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 497-503. doi: 10.13433/j.cnki.1003-8728.20220248

Study on Ultrasonic Vibration Assisted Polishing Force and Surface Quality of CoCrMo Alloy

doi: 10.13433/j.cnki.1003-8728.20220248
  • Received Date: 2021-12-29
  • Publish Date: 2024-03-25
  • Aiming at the difficult processing of CoCrMo alloy, the processing method of ultrasonic vibration assisted polishing is used to improve the processing effect. According to the motion characteristics of the ultrasonic vibration device, the speed of the single abrasive particle, the coordinate of the contact track between the single abrasive particle and the workpiece, and the force of the single abrasive particle are analyzed, and the polishing force prediction model for the polishing system is established. The effects of the spindle speed, feed speed and polishing depth on the surface quality of CoCrMo alloy are discussed and the validity of the prediction model is verified by experiments. The results show that the polishing force prediction model is consistent with the experiment. The polishing force increases with the increasing of spindle speed and polishing depth, and decreases with the increasing of feed speed. This research will provide a theoretical basis for the ultrasonic vibration-assisted polishing process.
  • loading
  • [1]
    JACKY. 中国骨科材料市场现状及创新趋势浅析[J]. 科技与金融, 2020(7): 53-57. doi: 10.3969/j.issn.2096-4935.2020.07.018

    JACKY. Current situation and innovation trend of orthopaedic material market in China[J]. STF Monthly, 2020(7): 53-57. (in Chinese) doi: 10.3969/j.issn.2096-4935.2020.07.018
    [2]
    三菱综合材料. 技术革新、突飞猛进的再生医疗器械行业[J]. 金属加工(冷加工), 2020(11): 25.

    Mitsubishi Materials. Regenerative medical device industry with technological innovation and rapid progress[J]. Metal Working (Metal Cutting), 2020(11): 25. (in Chinese)
    [3]
    SONIA P, JAIN J K, SAXENA K K. Influence of ultrasonic vibration assistance in manufacturing processes: a review[J]. Materials and Manufacturing Processes, 2021, 36(13): 1451-1475. doi: 10.1080/10426914.2021.1914843
    [4]
    WANG Y, LIN B, WANG S L, et al. Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing[J]. International Journal of Machine Tools and Manufacture, 2014, 77: 66-73. doi: 10.1016/j.ijmachtools.2013.11.003
    [5]
    原路生, 赵波, 王毅, 等. 椭圆振动辅助车削7075铝合金表面微织构及其特性[J]. 中国机械工程, 2020, 31(15): 1831-1838. doi: 10.3969/j.issn.1004-132X.2020.15.010

    YUAN L S, ZHAO B, WANG Y, et al. Surface micro-texture characteristics of 7075 aluminum alloys by elliptical vibration assisted turning[J]. China Mechanical Engineering, 2020, 31(15): 1831-1838. (in Chinese) doi: 10.3969/j.issn.1004-132X.2020.15.010
    [6]
    YU T B, GUO X P, WANG Z H, et al. Effects of the ultrasonic vibration field on polishing process of nickel-based alloy Inconel718[J]. Journal of Materials Processing Technology, 2019, 273: 116228. doi: 10.1016/j.jmatprotec.2019.05.009
    [7]
    李义辉. 超声无磨料内圆抛光声学系统及抛光工艺研究[D]. 焦作: 河南理工大学, 2010.

    LI Y H. Study on acoustic system and process of ultrasonic inner circle polishing without abrasives[D]. Jiaozuo: Henan Polytechnic University, 2010. (in Chinese)
    [8]
    倪陈兵, 朱立达, 宁晋生, 等. 超声振动辅助铣削钛合金铣削力信号及切屑特征研究[J]. 机械工程学报, 2019, 55(7): 207-216. doi: 10.3901/JME.2019.07.207

    NI C B, ZHU L D, NING J S, et al. Research on the characteristics of cutting force signal and chip in ultrasonic vibration-assisted milling of titanium alloys[J]. Journal of Mechanical Engineering, 2019, 55(7): 207-216 . (in Chinese) doi: 10.3901/JME.2019.07.207
    [9]
    马文举, 薛进学, 隆志力, 等. 纵扭超声磨削ZrO2陶瓷表面形貌及粗糙度特征研究[J]. 机械科学与技术, 2021, 40(7): 1058-1064.

    MA W J, XUE J X, LONG Z L, et al. Study on surface morphology and roughness characteristics of ZrO2 ceramics longitudinal torsional ultrasonic grinding[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(7): 1058-1064 . (in Chinese)
    [10]
    ZHAO G L, MAO P C, LI L, et al. Micro-milling of 65 vol% SiCp/Al Composites with a Novel Laser-assisted Hybrid Process[J]. Ceramics International, 2020, 46(16): 26121-26128. doi: 10.1016/j.ceramint.2020.07.107
    [11]
    ZHAO Q L, SUN Z Y, GUO B. Material removal mechanism in ultrasonic vibration assisted polishing of Micro cylindrical surface on SiC[J]. International Journal of Machine Tools and Manufacture, 2016, 103: 28-39. doi: 10.1016/j.ijmachtools.2016.01.003
    [12]
    张翔宇, 路正惠, 彭振龙, 等. 钛合金的高质高效超声振动切削加工[J]. 机械工程学报, 2021, 57(5): 133-147. doi: 10.3901/JME.2021.05.133

    ZHANG X Y, LU Z H, PENG Z L, et al. High quality and efficient ultrasonic vibration cutting of titanium alloys[J]. Journal of Mechanical Engineering, 2021, 57(5): 133-147. (in Chinese) doi: 10.3901/JME.2021.05.133
    [13]
    丁凯, 李奇林, 雷卫宁, 等. 单颗磨粒超声辅助磨削SiC陶瓷材料去除机理[J]. 中国机械工程, 2021, 32(19): 2331-2339. doi: 10.3969/j.issn.1004-132X.2021.19.008

    DING K, LI Q L, LEI W N, et al. Material removal mechanism during UAG of SiC ceramic with a brazed single abrasive grain tool[J]. China Mechanical Engineering, 2021, 32(19): 2331-2339. (in Chinese) doi: 10.3969/j.issn.1004-132X.2021.19.008
    [14]
    郑非非, 董志刚, 张嘉桐, 等. 超声振动对单颗金刚石工具划擦RB-SiC材料去除行为的影响[J]. 机械工程学报, 2019, 55(1): 225-232. doi: 10.3901/JME.2019.01.225

    ZHENG F F, DONG Z G, ZHANG J T, et al. Influence of ultrasonic vibration on material removal of scratching on RB-SiC with single diamond tool[J]. Journal of Mechanical Engineering, 2019, 55(1): 225-232 . (in Chinese) doi: 10.3901/JME.2019.01.225
    [15]
    卢昊. 二维超声研磨加工装置设计及加工机理研究[D]. 长春: 长春工业大学, 2020.

    LU H. Research on the design and machining mechanism of two-dimensional ultrasonic grinding device[D]. Changchun: Changchun University of Technology, 2020. (in Chinese)
    [16]
    JOHNSON K L, KENDALL K, ROBERTS A D. Surface energy and the contact of elastic solids[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1971, 324(1558): 301-313.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (56) PDF downloads(1) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return