Volume 43 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
YANG Xiaohui, ZHOU Lingyu, LIU Ning, MENG Xianyu. Prediction Model for Subsurface Damage in Grinding of Optical Glass and Doe Experiment Design[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 520-525. doi: 10.13433/j.cnki.1003-8728.20220242
Citation: YANG Xiaohui, ZHOU Lingyu, LIU Ning, MENG Xianyu. Prediction Model for Subsurface Damage in Grinding of Optical Glass and Doe Experiment Design[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(3): 520-525. doi: 10.13433/j.cnki.1003-8728.20220242

Prediction Model for Subsurface Damage in Grinding of Optical Glass and Doe Experiment Design

doi: 10.13433/j.cnki.1003-8728.20220242
  • Received Date: 2020-08-27
  • Publish Date: 2024-03-25
  • In order to master the optical glass cup wheel grinding and surface roughness (SR) and subsurface damage (SSD) mechanism, the prediction model for surface roughness of BK7 optical glass in grinding of cup wheel is established, and the influence on the surface roughness is studied by changing the grinding parameters. The DOE experiment is designed to study the significant characteristic factors affecting the SR and SSD, and the interaction among the different factors has been analyzed. The experimental results have shown that the prediction model is reliable, and the average error between the prediction and the experimental results of surface roughness obtained is 5.47%. The surface crack is observed and its depth is measured via electron microscope by using the angle polishing method. Finally, a novel prediction model for subsurface damage by using the grinding parameters is established based on the Li model. The results have shown that the results of experiment model are in a good agreement with those results by using the prediction model, the average error between the predicted and experimental results is 6.19%, and the results via the novel prediction model are better than that via Li model.
  • loading
  • [1]
    刘硕. BK7光学玻璃超声振动磨削力建模及工艺实验的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 60-64.

    LIU S. Grinding force modeling and experiment research in ultrasonic vibration grinding of optical glass BK7[D]. Harbin: Harbin Institute of Technology, 2019: 60-64. (in Chinese)
    [2]
    王洋. 金刚石磨粒超声振动刻划BK7玻璃的亚表面损伤研究[J]. 金刚石与磨料磨具工程, 2020, 40(1): 29-33. doi: 10.13394/j.cnki.jgszz.2020.1.0004

    WANG Y. Study on sub surface damage of BK7 glass by ultrasonic vibration of diamond abrasive[J]. Diamond & Abrasives Engineering, 2020, 40(1): 29-33. (in Chinese) doi: 10.13394/j.cnki.jgszz.2020.1.0004
    [3]
    黄铖. BK7光学玻璃超声振动磨削亚表面损伤的研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 45-47.

    HUANG C. Research on subsurface damages in ultrasonic assisted grinding of BK7 optical glass[D]. Harbin: Harbin Institute of Technology, 2017: 45-47. (in Chinese)
    [4]
    HE J H, BARAHIMI V, FARAHNAKIAN M, et al. A new monitor model to detect damages in surface and subsurface during cup grinding process of BK7 optical glass: a new optimization model for energy damage[J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(5): 1949-1957. doi: 10.1007/s10973-020-09660-5
    [5]
    SOLHTALAB A, ADIBI H, ESMAEILZARE A, et al. Cup wheel grinding-induced subsurface damage in optical glass BK7: An experimental, theoretical and numerical investigation[J]. Precision Engineering, 2019, 57: 162-175. doi: 10.1016/j.precisioneng.2019.04.003
    [6]
    ZHAO P Y, ZHOU M, ZHANG Y J, et al. Surface roughness prediction model in ultrasonic vibration assisted grinding of BK7 optical glass (English)[J]. Journal of Central South University, 2018, 25(2): 277-286.
    [7]
    周明, 黄铖, 赵培轶, 等. 光学玻璃超声振动磨削亚表面损伤的试验研究[J]. 工具技术, 2017, 51(7): 15-19. doi: 10.16567/j.cnki.1000-7008.2017.07.004

    ZHOU M, HUANG C, ZHAO P Y, et al. Experimental research on optical glass ultrasonic vibration grinding subsurface damage[J]. Tool Engineering, 2017, 51(7): 15-19. (in Chinese) doi: 10.16567/j.cnki.1000-7008.2017.07.004
    [8]
    LI S Y, WANG Z, WU Y L. Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes[J]. Journal of Materials Processing Technology, 2008, 205(1-3): 34-41. doi: 10.1016/j.jmatprotec.2007.11.118
    [9]
    YAO Z Q, GU W B, LI K M. Relationship between surface roughness and subsurface crack depth during grinding of optical glass BK7[J]. Journal of Materials Processing Technology, 2012, 212(4): 969-976. doi: 10.1016/j.jmatprotec.2011.12.007
    [10]
    LAWN B R, EVANS A G, MARSHALL D B. Elastic/plastic indentation damage in ceramics: the median/radial crack system[J]. Journal of the American Ceramic Society, 1980, 63(9-10): 574-581. doi: 10.1111/j.1151-2916.1980.tb10768.x
    [11]
    LYU D X, YAN C, CHEN G, et al. Mechanistic prediction for cutting force in rotary ultrasonic machining of BK7 glass based on probability statistics[J]. Ultrasonics, 2020, 101: 106006. doi: 10.1016/j.ultras.2019.106006
    [12]
    CHEN J B, FANG Q H, LI P. Effect of grinding wheel spindle vibration on surface roughness and subsurface damage in brittle material grinding[J]. International Journal of Machine Tools and Manufacture, 2015, 91: 12-23. doi: 10.1016/j.ijmachtools.2015.01.003
    [13]
    LYU D X. Influences of high-frequency vibration on tool wear in rotary ultrasonic machining of glass BK7[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(5-8): 1443-1455.
    [14]
    LAMBROPOULOS J C, FANG T, FUNKENBUSCH P D, et al. Surface microroughness of optical glasses under deterministic microgrinding[J]. Applied Optics, 1996, 35(22): 4448-4462. doi: 10.1364/AO.35.004448
    [15]
    吕东喜, 王洪祥, 黄燕华. 光学材料磨削的亚表面损伤预测[J]. 光学精密工程, 2013, 21(3): 680-686. doi: 10.3788/OPE.20132103.0680

    LYU D X, WANG H X, HUANG Y H. Prediction of grinding induced subsurface damage of optical materials[J]. Optics and Precision Engineering, 2013, 21(3): 680-686. (in Chinese) doi: 10.3788/OPE.20132103.0680
    [16]
    李平. 脆性光学材料高效精密低损伤磨削加工机理、工艺及工程应用研究[D]. 长沙: 湖南大学, 2017: 166-170.

    LI P. Research on grinding mechanism, processing and engineering application of the precision and low damage grinding technology oriented to achieve high process efficiency for brittle optical materials[D]. Changsha: Hunan University, 2017: 166-170. (in Chinese)
    [17]
    朱家豪. 弧形金刚石砂轮精密修整与非球面磨削技术研究[D]. 济南: 山东大学, 2019: 33-39.

    ZHU J H. Precision truing of arc-shaped diamond grinding wheel and grinding of aspheric optics[D]. Ji'nan: Shandong University, 2019: 33-39. (in Chinese)
    [18]
    吕东喜, 陈明达, 姚友强, 等. 基于概率统计的BK7玻璃磨削亚表层损伤深度在线预测技术[J]. 光学精密工程, 2020, 28(1): 102-109. doi: 10.3788/OPE.20202801.0102

    LYU D X, CHEN M D, YAO Y Q, et al. Prediction of subsurface damage depth in grinding of BK7 glass based on probability statistics[J]. Optics and Precision Engineering, 2020, 28(1): 102-109. (in Chinese) doi: 10.3788/OPE.20202801.0102
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article views (38) PDF downloads(2) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return