Volume 42 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
LIN Yun, GUO Yu, LIU Zhen. Robust Amplitude Exponential Adaptive Method for Spectral Amplitude Modulation[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(1): 53-58. doi: 10.13433/j.cnki.1003-8728.20200578
Citation: LIN Yun, GUO Yu, LIU Zhen. Robust Amplitude Exponential Adaptive Method for Spectral Amplitude Modulation[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(1): 53-58. doi: 10.13433/j.cnki.1003-8728.20200578

Robust Amplitude Exponential Adaptive Method for Spectral Amplitude Modulation

doi: 10.13433/j.cnki.1003-8728.20200578
  • Received Date: 2021-02-21
  • Publish Date: 2023-01-25
  • The spectrum amplitude modulation (SAM) method, which was proposed recently, can be used to do the feature extraction of different fault signals by adjusting the exponential of amplitude adaptively, and it has a quite good practical perspective. However, the exponential of amplitude of this method still needs to be judged manually, which leads to the result that it can not be used to extract the fault features automatically. Moreover, when the fault features are interfered by complex disturbances, it is difficult to select the optimal exponential of amplitude manually. Therefore, a robust amplitude exponential adaptive spectral amplitude modulation method is proposed in this paper. Firstly, the signal is converted to angular domain by angle domain resampling, and then the shock characteristics generated by the faulty planet bearing are enhanced by the multipoint optimal minimum entropy deconvolution adjusted (MOMEDA). Finally, the exponential of cepstrum amplitude in SAM is adaptively selected with ICS2 (indicator of second order cyclostationary). The cepstrum signal is calculated by the optimal exponential of amplitude, in this way, the problem that the SAM method cannot automatically extract fault features is solved. The fault feature extraction of inner race of planetary bearing is verified. Experimental results show that the proposed method can adaptively extract fault features of inner race of planetary bearing under complex interference.
  • loading
  • [1]
    李杰, 赵建民. 基于时域同步平均与分离技术的齿轮箱振动信号混沌特性验证[J]. 机械传动, 2018, 42(7): 162-167 https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201807033.htm

    LI J, ZHAO J M. Chaotic characteristic verification of gearbox vibration signal based on the time synchronous averaging and separation technology[J]. Journal of Mechanical Transmission, 2018, 42(7): 162-167 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201807033.htm
    [2]
    高佳豪, 郭瑜, 伍星. 基于SANC和一维卷积神经网络的齿轮箱轴承故障诊断[J]. 振动与冲击, 2020, 39(19): 204-209+257 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202019031.htm

    GAO J H, GUO Y, WU X. Gearbox bearing fault diagnosis based on SANC and 1-D CNN[J]. Journal of Vibration and Shock, 2020, 39(19): 204-209+257 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202019031.htm
    [3]
    ABBOUD D, ANTONI J, SIEG-ZIEBA S, et al. Deterministic-random separation in nonstationary regime[J]. Journal of Sound and Vibration, 2016, 362: 305-326 doi: 10.1016/j.jsv.2015.09.029
    [4]
    PEETERS C, GUILLAUME P, HELSEN J. A comparison of cepstral editing methods as signal pre-processing techniques for vibration-based bearing fault detection[J]. Mechanical Systems and Signal Processing, 2017, 91(3): 354-381
    [5]
    张晓飞, 胡茑庆, 胡雷, 等. 基于倒谱预白化和随机共振的轴承故障增强检测[J]. 机械工程学报, 2012, 48(23): 83-89 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201223014.htm

    ZHANG X F, HU N Q, HU L, et al. Enhanced detection of bearing faults based on signal cepstrum pre-whitening and stochastic resonance[J]. Journal of Mechanical Engineering, 2012, 48(23): 83-89 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201223014.htm
    [6]
    邓飞跃, 唐贵基, 何玉灵. 基于倒谱预白化和形态学自互补Top-Hat变换的滚动轴承故障特征提取[J]. 振动与冲击, 2015, 34(15): 77-81+149 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201515016.htm

    DENG F Y, TANG G J, HE Y L. Fault feature extraction for rolling element bearings based on cepstrum pre-whitening and morphology self-complementary Top-Hat transformation[J]. Journal of Vibration and Shock, 2015, 34(15): 77-81+149 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201515016.htm
    [7]
    IBARRA-ZARATE D, TAMAYO-PAZOS O, VALLEJO-GUEVARA A. Bearing fault diagnosis in rotating machinery based on cepstrum pre-whitening of vibration and acoustic emission[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(9-12): 4155-4168 doi: 10.1007/s00170-019-04171-6
    [8]
    MOSHREFZADEH A, FASANA A, ANTONI J. The spectral amplitude modulation: a nonlinear filtering process for diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2019, 132: 253-276
    [9]
    MCDONALD G L, ZHAO Q. Multipoint optimal minimum entropy deconvolution and convolution fix: application to vibration fault detection[J]. Mechanical Systems and Signal Processing, 2017, 82: 461-477
    [10]
    SMITH W A, RANDALL R B, DE CHASTEIGNER DU MÉE X, et al. Use of cyclostationary properties to diagnose planet bearing faults in variable speed conditions[C]//Proceedings of the Tenth DST Group International Conference on Health and Usage Monitoring Systems. Melbourne, 2017
    [11]
    赵修平, 齐嘉兴, 崔伟成, 等. MOMEDA结合数学形态滤波的齿轮故障特征提取[J]. 机械科学与技术, 2020, 39(2): 247-252 doi: 10.13433/j.cnki.1003-8728.20190122

    ZHAO X P, QI J X, CUI W C, et al. Gear fault feature extraction applying MOMEDA and mathematical morphology filtering[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(2): 247-252 (in Chinese) doi: 10.13433/j.cnki.1003-8728.20190122
    [12]
    孔运, 王天杨, 褚福磊. 自适应TQWT滤波器算法及其在冲击特征提取中的应用[J]. 振动与冲击, 2019, 38(11): 9-16+23 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201911003.htm

    KONG Y, WANG T Y, CHU F L. Adaptive TQWT filter algorithm and its application in impact feature extraction[J]. Journal of Vibration and Shock, 2019, 38(11): 9-16+23 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201911003.htm
    [13]
    MCDONALD G L, ZHAO Q, ZUO M J. Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection[J]. Mechanical Systems and Signal Processing, 2012, 33: 237-255
    [14]
    RANDALL R B, ANTONI J. Rolling element bearing diagnostics-A tutorial[J]. Mechanical Systems and Signal Processing, 2011, 25(2): 485-520
    [15]
    武超, 孙虎儿, 梁晓华. 基于MOMEDA和包络谱的齿轮微弱故障特征提取[J]. 机械传动, 2018, 42(3): 164-168 https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201803034.htm

    WU C, SUN H E, LIANG X H. Feature extraction of weak fault for gear based on MOMEDA and envelope spectrum[J]. Journal of Mechanical Transmission, 2018, 42(3): 164-168 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201803034.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article views (157) PDF downloads(26) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return