Volume 42 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
REN Shengjie, GUO Weichao, SHU Dingzhen, TANG Aofei, GAO Xinqin, LI Yan. Fault Diagnosis Method of Rolling Bearing Combining Time-frequency Analysis with Deep Learning[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(1): 149-158. doi: 10.13433/j.cnki.1003-8728.20200575
Citation: REN Shengjie, GUO Weichao, SHU Dingzhen, TANG Aofei, GAO Xinqin, LI Yan. Fault Diagnosis Method of Rolling Bearing Combining Time-frequency Analysis with Deep Learning[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(1): 149-158. doi: 10.13433/j.cnki.1003-8728.20200575

Fault Diagnosis Method of Rolling Bearing Combining Time-frequency Analysis with Deep Learning

doi: 10.13433/j.cnki.1003-8728.20200575
  • Received Date: 2021-02-02
  • Publish Date: 2023-01-25
  • Rolling bearings are widely used in rotating machinery, and the working conditions of the bearings seriously affect the normal operation of mechanical equipment. In order to improve the accuracy of bearing fault diagnosis, a new fault diagnosis method of rolling bearing combining time-frequency analysis with deep learning is proposed in this paper. Firstly, ten different time-frequency analysis methods are analyzed and compared. Then, the fault diagnosis model for rolling bearings using deep learning is established, and the transfer learning is applied to overcome the problem led by small number of training samples. By contrast, the accuracy of constant Q transform (CQT) can reach 100%. Finally, the effectiveness and reliability of the proposed method are verified via the experimental data. The recognition accuracies under different working loads and noise environment are evaluated respectively, and are compared to the results obtained by other methods in references. The results show that the proposed method has better robustness and higher recognition accuracy under different working environment conditions.
  • loading
  • [1]
    WANG Z J, ZHOU J, WANG J Y, et al. A novel fault diagnosis method of gearbox based on maximum kurtosis spectral entropy deconvolution[J]. IEEE Access, 2019, 7: 29520-29532 doi: 10.1109/ACCESS.2019.2900503
    [2]
    雷亚国, 杨彬, 杜兆钧, 等. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报, 2019, 55(7): 1-8 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201907001.htm

    LEI Y G, YANG B, DU Z J, et al. Deep transfer diagnosis method for machinery in big data era[J]. Journal of Mechanical Engineering, 2019, 55(7): 1-8 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201907001.htm
    [3]
    ZHANG W, PENG G L, LI C H, et al. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors, 2017, 17(2): 425 doi: 10.3390/s17020425
    [4]
    孙国栋, 王俊豪, 徐昀, 等. CEEMD-WVD多尺度时频图像的滚动轴承故障诊断[J]. 机械科学与技术, 2020, 39(5): 688-694 doi: 10.13433/j.cnki.1003-8728.20190192

    SUN G D, WANG J H, XU Y, et al. Rolling bearing fault diagnosis based on CEEMD-WVD multi-scale time-frequency image[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(5): 688-694 (in Chinese) doi: 10.13433/j.cnki.1003-8728.20190192
    [5]
    DENG J, XU X Z, ZHANG Z X, et al. Universum autoencoder-based domain adaptation for speech emotion recognition[J]. IEEE Signal Processing Letters, 2017, 24(4): 500-504 doi: 10.1109/LSP.2017.2672753
    [6]
    WANG J Y, MO Z L, ZHANG H, et al. A deep learning method for bearing fault diagnosis based on time-frequency image[J]. IEEE Access, 2019, 7: 42373-42383 doi: 10.1109/ACCESS.2019.2907131
    [7]
    SARAVANAN N, RAMACHANDRAN K I. Incipient gear box fault diagnosis using discrete wavelet transform (DWT) for feature extraction and classification using artificial neural network (ANN)[J]. Expert Systems with Applications, 2010, 37(6): 4168-4181 doi: 10.1016/j.eswa.2009.11.006
    [8]
    AMAR M, GONDAL I, WILSON C. Vibration spectrum imaging: a novel bearing fault classification approach[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 494-502 doi: 10.1109/TIE.2014.2327555
    [9]
    GUO X J, CHEN L, SHEN C Q. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis[J]. Measurement, 2016, 93: 490-502 doi: 10.1016/j.measurement.2016.07.054
    [10]
    PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359 doi: 10.1109/TKDE.2009.191
    [11]
    SOHAIB M, KIM C H, KIM J M. A hybrid feature model and deep-learning-based bearing fault diagnosis[J]. Sensors, 2017, 17(12): 2876 doi: 10.3390/s17122876
    [12]
    LI X, JIA X D, ZHANG W, et al. Intelligent cross-machine fault diagnosis approach with deep auto-encoder and domain adaptation[J]. Neurocomputing, 2020, 383: 235-247 doi: 10.1016/j.neucom.2019.12.033
    [13]
    CHEN D M, YANG S, ZHOU F N. Incipient fault diagnosis based on dnn with transfer learning[C]//International Conference on Control, Automation and Information Sciences (ICCAIS). Hangzhou: IEEE, 2018: 303-308
    [14]
    邵海东, 张笑阳, 程军圣, 等. 基于提升深度迁移自动编码器的轴承智能故障诊断[J]. 机械工程学报, 2020, 56(9): 84-90 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202009011.htm

    SHAO H D, ZHANG X Y, CHENG J S, et al. Intelligent fault diagnosis of bearing using enhanced deep transfer Auto-encoder[J]. Journal of Mechanical Engineering, 2020, 56(9): 84-90 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202009011.htm
    [15]
    ZHUANG Z L, LV H C, XU J, et al. A deep learning method for bearing fault diagnosis through stacked residual dilated convolutions[J]. Applied Sciences, 2019, 9(9): 1823 doi: 10.3390/app9091823
    [16]
    HOLIGHAUS N, DORFLER M, VELASCO G A, et al. A framework for invertible, real-time constant-Q transforms[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(4): 775-785 doi: 10.1109/TASL.2012.2234114
    [17]
    OBERLIN T, MEIGNEN S, PERRIER V. The fourier-based synchrosqueezing transform[C]//2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Florence, Italy: IEEE, 2014
    [18]
    ANTONI J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing, 2007, 21(1): 108-124 doi: 10.1016/j.ymssp.2005.12.002
    [19]
    KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90 doi: 10.1145/3065386
    [20]
    TAN C Q, SUN F C, KONG T, et al. A survey on deep transfer learning[C]//27th Artificial Neural Networks and Machine Learning-ICANN 2018 Rhodes: Springer, 2018
    [21]
    崔佳旭, 杨博. 贝叶斯优化方法和应用综述[J]. 软件学报, 2018, 29(10): 3068-3090 https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201810011.htm

    CUI J X, YANG B. Survey on bayesian optimization methodology and applications[J]. Journal of Software, 2018, 29(10): 3068-3090 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201810011.htm
    [22]
    LOU X S, LOPARO K A. Bearing fault diagnosis based on wavelet transform and fuzzy inference[J]. Mechanical Systems and Signal Processing, 2004, 18(5): 1077-1095 doi: 10.1016/S0888-3270(03)00077-3
    [23]
    SANTOS P, MAUDES J, BUSTILLO A. Identifying maximum imbalance in datasets for fault diagnosis of gearboxes[J]. Journal of Intelligent Manufacturing, 2018, 29(2): 333-351 doi: 10.1007/s10845-015-1110-0
    [24]
    VAN DER MAATEN L. Accelerating t-SNE using tree-based algorithms[J]. Journal of Machine Learning Research, 2014, 15(1): 3221-3245
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Article views (413) PDF downloads(53) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return