Turn off MathJax
Article Contents
Yuan Fangyang, Cui Zhengwei. Study on Characteristrics of Nanopowder Continuous High Pressure Dispersing System[J]. Mechanical Science and Technology for Aerospace Engineering. doi: 10.13433/j.cnki.1003-8728.20190270
Citation: Yuan Fangyang, Cui Zhengwei. Study on Characteristrics of Nanopowder Continuous High Pressure Dispersing System[J]. Mechanical Science and Technology for Aerospace Engineering. doi: 10.13433/j.cnki.1003-8728.20190270

Study on Characteristrics of Nanopowder Continuous High Pressure Dispersing System

doi: 10.13433/j.cnki.1003-8728.20190270
  • Received Date: 2019-06-30
    Available Online: 2020-12-29
  • A continuous dispersing device for deagglomerating ultrafine particles is established. The experimental results show that nanoparticles can be dispersed to the primary particle size range via a continuous jet dispersion system. In order to investigate the mechanism and high-pressure dispersion characteristics of high pressure dispersion, the secondary jet dispersion of dry-powder nanoparticles was modeled and numerical simulated. The results show that numerical results of dynamic pressure profile agree with experiments. The particle number density decreases along the flow direction, and the experimental data is lower than the simulation results. The high pressure dispersing nozzle should not be too long to avoid re-agglomeration of the particles when passing through the nozzle. The aspect ratio of nozzle near 2.5 can produce the maximum shear rate at the jet outlet to obtain the best particle dispersion effect.
  • loading
  • [1]
    Cao G Z, Wang Y. Nanostructures and nanomaterials: synthesis, properties and applications[M]. London: World Scientific, 2011
    Astruc D, Lu F, Aranzaes J R. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis[J]. Angewandte Chemie International Edition, 2005, 44(48): 7852-7872 doi: 10.1002/anie.200500766
    van Ommen J R, Valverde J M, Pfeffer R. Fluidization of nanopowders: a review[J]. Journal of Nanoparticle Research, 2012, 14(3): 737 doi: 10.1007/s11051-012-0737-4
    Masuda H. Dry dispersion of fine particles in gaseous phase[J]. Advanced Powder Technology, 2009, 20(2): 113-122 doi: 10.1016/j.apt.2009.02.001
    张丽. 分散、解聚纳米碳酸钙粉体的高效节能粉磨技术[J]. 中国粉体技术, 2014, 20(2): 35-38

    Zhang L. Energy-efficient grinding technology for dispersion and de-aggregation of calcium carbonate nano-particles[J]. China Powder Science and Technology, 2014, 20(2): 35-38 (in Chinese)
    Sullivan R C, Moore M J K, Petters M D, et al. Impact of particle generation method on the apparent hygroscopicity of insoluble mineral particles[J]. Aerosol Science and Technology, 2010, 44(10): 830-846 doi: 10.1080/02786826.2010.497514
    Calvert G, Ghadiri M, Tweedie R. Aerodynamic dispersion of cohesive powders: a review of understanding and technology[J]. Advanced Powder Technology, 2009, 20(1): 4-16 doi: 10.1016/j.apt.2008.09.001
    Tang P, Fletcher D F, Chan H K, et al. Simple and cost-effective powder disperser for aerosol particle size measurement[J]. Powder Technology, 2008, 187(1): 27-36 doi: 10.1016/j.powtec.2008.01.003
    Tiwari A J, Fields C G, Marr L C. A cost-effective method of aerosolizing dry powdered nanoparticles[J]. Aerosol Science and Technology, 2013, 47(11): 1267-1275 doi: 10.1080/02786826.2013.834292
    Tu C X, Lin J Z, Yin Z Q, et al. Powder disperser for the continuous aerosolizing of dry powdered nanoparticles[J]. Advanced Powder Technology, 2017, 28(11): 2848-2858 doi: 10.1016/j.apt.2017.08.011
    覃成鹏, 杨宁. 多相分散体系中气泡/液滴聚并和破碎的群平衡模拟[J]. 化学进展, 2016, 28(8): 1207-1223

    Qin C P, Yang N. Population balance modeling of breakage and coalescence of dispersed bubbles or droplets in multiphase systems[J]. Progress in Chemistry, 2016, 28(8): 1207-1223 (in Chinese)
    Weiler C, Wolkenhauer M, Trunk M, et al. New model describing the total dispersion of dry powder agglomerates[J]. Powder Technology, 2010, 203(2): 248-253 doi: 10.1016/j.powtec.2010.05.015
    Rumpf H. The strength of granules and agglomerates[M]//Knepper W A. Agglomeration. New York: Interscience, 1962: 414
    De Bona J, Lanotte A S, Vanni M. Internal stresses and breakup of rigid isostatic aggregates in homogeneous and isotropic turbulence[J]. Journal of Fluid Mechanics, 2014, 755: 365-396 doi: 10.1017/jfm.2014.421
    Deng X L, Davé R N. Breakage of fractal agglomerates[J]. Chemical Engineering Science, 2017, 161: 117-126 doi: 10.1016/j.ces.2016.12.018
    凃程旭. 剪切流中纳米颗粒的凝并和弥散机理及相关的实验技术研究[D]. 杭州: 浙江大学, 2015

    Tu C X. Research on the nanoparticles cogulation and dispersion in shear layers and the related experimental methods[M]. Hangzhou: Zhejiang University, 2015 (in Chinese)
    He M L, Dhaniyala S. A multiple charging correction algorithm for scanning electrical mobility spectrometer data[J]. Journal of Aerosol Science, 2013, 61: 13-26 doi: 10.1016/j.jaerosci.2013.03.007
    Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605 doi: 10.2514/3.12149
    Arffman A, Marjamäki M, Keskinen J. Simulation of low pressure impactor collection efficiency curves[J]. Journal of Aerosol Science, 2011, 42(5): 329-340 doi: 10.1016/j.jaerosci.2011.02.006
    Zhang N, Zheng Z C, Glasgow L, et al. Simulation of particle deposition at the bottom surface in a room-scale chamber with particle injection[J]. Advanced Powder Technology, 2010, 21(3): 256-267 doi: 10.1016/j.apt.2009.12.002
    Friedlander S K. Smoke, Dust, and haze: fundamentals of aerosol dynamics[M]. 2nd ed. New York: Oxford University Press, 2000
    Yu M Z, Lin J Z, Chen L H, et al. Large eddy simulation of a planar jet flow with nanoparticle coagulation[J]. Acta Mechanica Sinica, 2006, 22(4): 293-300 doi: 10.1007/s10409-006-0011-z
    Marchisio D L, Soos M, Sefcik J, et al. Role of turbulent shear rate distribution in aggregation and breakage processes[J]. AIChE Journal, 2006, 52(1): 158-173 doi: 10.1002/aic.10614
    Park K S, Heister S D. Modeling particle collision processes in high Reynolds number flow[J]. Journal of Aerosol Science, 2013, 66: 123-138 doi: 10.1016/j.jaerosci.2013.08.010
    Barthelmes G, Pratsinis S E, Buggisch H. Particle size distributions and viscosity of suspensions undergoing shear-induced coagulation and fragmentation[J]. Chemical Engineering Science, 2003, 58(13): 2893-2902 doi: 10.1016/S0009-2509(03)00133-7
    Yu M Z, Lin J Z, Chan T. A new moment method for solving the coagulation equation for particles in Brownian motion[J]. Aerosol Science and Technology, 2008, 42(9): 705-713 doi: 10.1080/02786820802232972
    Wang L, Marchisio D L, Vigil R D, et al. CFD simulation of aggregation and breakage processes in laminar Taylor–Couette flow[J]. Journal of Colloid and Interface Science, 2005, 282(2): 380-396 doi: 10.1016/j.jcis.2004.08.127
    Wu Y Y, Tu C X, Zhang Z G, et al. Effect of divergence angle of ejector nozzle on aerosolisation of powdered nanoparticles[J]. Molecular Simulation, 2019, 45(7): 556-563 doi: 10.1080/08927022.2018.1564076
    Mi J X, Xu M Y, Zhou T M. Reynolds number influence on statistical behaviors of turbulence in a circular free jet[J]. Physics of Fluids, 2013, 25(7): 075101 doi: 10.1063/1.4811403
    Mi J, Nathan G J. Statistical properties of turbulent free jets issuing from nine differently-shaped nozzles[J]. Flow, Turbulence and Combustion, 2010, 84(4): 583-606 doi: 10.1007/s10494-009-9240-0
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (4808) PDF downloads(289) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint