Volume 37 Issue 8
Aug.  2018
Turn off MathJax
Article Contents
Yun Yang, Song Hua, Xu Bingji. Study on Kinematics Simulation for Six Degree-of-Freedom Industrial Robot Arms[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(8): 1167-1176. doi: 10.13433/j.cnki.1003-8728.20180029
Citation: Yun Yang, Song Hua, Xu Bingji. Study on Kinematics Simulation for Six Degree-of-Freedom Industrial Robot Arms[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(8): 1167-1176. doi: 10.13433/j.cnki.1003-8728.20180029

Study on Kinematics Simulation for Six Degree-of-Freedom Industrial Robot Arms

doi: 10.13433/j.cnki.1003-8728.20180029
  • Received Date: 2017-06-13
  • Publish Date: 2018-08-05
  • In order to solve the traditional interpolation method of manipulator running slowly, this paper adopts a structuring Jacobi function approach to interpolation on the target curve, calculates the Jacobi matrix of each point on the curve according to the target curve, and forms a Jacobi matrix function. Then the target curve is fitted out the end effector speed function and each arm angular velocity function at the joint. Therefore, this paper calculates the Jacobi matrix of each position in real-time to obtain the speed of each joint according to end effector speed, which ensures that the end effector speed is controllable at each position in the workspace. At last, KUKA KR30-3 industrial robot model is used to simulate and validate this method, and its simulation analysis is done in helmet processing. The simulation results show that the speed function of each joint angle of manipulator can be calculated according to the end effector position function, and the continuity of velocity can be guaranteed when the singularity of the manipulator is avoided.
  • loading
  • [1]
    Marti K, Aurnhammer A. Robust optimal trajectory planning for robots by stochastic optimization[J]. Mathematical and Computer Modelling of Dynamical Systems, 2002,8(1):75-116
    [2]
    Zhao Y T, Zheng B, Lin M H. A new method of 6-DOF serial robot's trajectory planning under multi-constraints[J]. Applied Mechanics and Materials, 2014,602-605:1352-1357
    [3]
    Abu-Dakka F J, Valero F, Mata V. Evolutionary path planning algorithm for industrial robots[J]. Advanced Robotics, 2012,26(11-12):1369-1392
    [4]
    Hayati S A. Robot arm geometric link parameter estimation[C]//IEEE Conference on Decision and Control. San Antonio, TX, USA:IEEE, 1983:1477-1483
    [5]
    Avram O, Valente A. Trajectory planning for reconfigurable industrial robots designed to operate in a high precision manufacturing industry[J]. Procedia CIRP, 2016,57:461-466
    [6]
    Rubio F, Llopis-Albert C, Valero F, et al. Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory[J]. Robotics and Autonomous Systems, 2016,86:106-112
    [7]
    Klimchik A, Magid E, Pashkevich A. Design of experiments for elastostatic calibration of heavy industrial robots with kinematic parallelogram and gravity compensator[J]. IFAC-PapersOnLine, 2016,49(12):967-972
    [8]
    Léger J, Angeles J. Off-line programming of six-axis robots for optimum five-dimensional tasks[J]. Mechanism and Machine Theory, 2016,100:155-169
    [9]
    Messay T, Ordón~ez R, Marcil E. Computationally efficient and robust kinematic calibration methodologies and their application to industrial robots[J]. Robotics and Computer-Integrated Manufacturing, 2016,37:33-48
    [10]
    Popa C, Dutu M F, Voiculescu L, et al. Kinematic study of industrial robots[J]. Applied Mechanics and Materials, 2015,762:267-270
    [11]
    Jia B X, Liu S, Liu Y. Visual trajectory tracking of industrial manipulator with iterative learning control[J]. Industrial Robot:An International Journal, 2015,42(1):54-63
    [12]
    Gao M Y, Chen D, Yang Y X, et al.A fixed-distance planning algorithm for 6-DOF manipulators[J]. Industrial Robot:An International Journal, 2015,42(6):586-599
    [13]
    Popa S, Dorin A, Nicolescu F A, et al. Quaternion-based algorithm for direct kinematic model of a Kawasaki FS10E articulated arm robot[J]. Applied Mechanics and Materials, 2015,762:249-254
    [14]
    潘磊,钱炜,张志艳,等.四自由度机械臂运动学分析及Matlab仿真[J].机械科学与技术,2013,32(3):421-425 Pan L, Qian W, Zhang Z Y, et al. Simulating kinematics of 4-DOF manipulator[J]. Mechanical Science and Technology for Aerospace Engineering, 2013,32(3):421-425(in Chinese)
    [15]
    赵燕江,张永德,姜金刚,等.基于Matlab的机器人工作空间求解方法[J].机械科学与技术,2009,28(12):1657-1661,1666 Zhao Y J, Zhang Y D, Jiang J G, et al. A method for solving robot Workspace based on Matlab[J]. Mechanical Science and Technology for Aerospace Engineering, 2009,28(12):1657-1661,1666(in Chinese)
    [16]
    曹毅,李秀娟,宁祎,等.三维机器人工作空间及几何误差分析[J].机械科学与技术,2006,25(12):1458-1461,1502 Cao Y, Li X J, Ning Y, et al. Computation and geometrical error analysis of a 3D robot's workspace[J]. Mechanical Science and Technology for Aerospace Engineering, 2006,25(12):1458-1461,1502(in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (4165) PDF downloads(1180) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return