留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锆钛酸铅压电陶瓷(PZT)俘能效率实验研究

翟康佳 王旭鹏 魏宇辰 张春强 田佳强 韩冰

翟康佳,王旭鹏,魏宇辰, 等. 锆钛酸铅压电陶瓷(PZT)俘能效率实验研究[J]. 机械科学与技术,2022,41(12):1887-1893 doi: 10.13433/j.cnki.1003-8728.20220313
引用本文: 翟康佳,王旭鹏,魏宇辰, 等. 锆钛酸铅压电陶瓷(PZT)俘能效率实验研究[J]. 机械科学与技术,2022,41(12):1887-1893 doi: 10.13433/j.cnki.1003-8728.20220313
ZHAI Kangjia, WANG Xupeng, WEI Yuchen, ZHANG Chunqiang, TIAN Jiaqiang, HAN Bing. Experimental Study on Energy Harvesting Efficiency of Lead Zirconate Titanate Piezoelectric Ceramics (PZT)[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(12): 1887-1893. doi: 10.13433/j.cnki.1003-8728.20220313
Citation: ZHAI Kangjia, WANG Xupeng, WEI Yuchen, ZHANG Chunqiang, TIAN Jiaqiang, HAN Bing. Experimental Study on Energy Harvesting Efficiency of Lead Zirconate Titanate Piezoelectric Ceramics (PZT)[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(12): 1887-1893. doi: 10.13433/j.cnki.1003-8728.20220313

锆钛酸铅压电陶瓷(PZT)俘能效率实验研究

doi: 10.13433/j.cnki.1003-8728.20220313
基金项目: 教育部青年基金项目(21XJC760003)与陕西省高校青年杰出人才配套基金项目(106-451420001)
详细信息
    作者简介:

    翟康佳(1998-),硕士研究生,研究方向为人体运动生物力学及其应用、可穿戴俘能装备,kjzhai@foxmail.com

    通讯作者:

    王旭鹏,教授,博士生导师,wangxupeng@xaut.edu.cn

  • 中图分类号: TB43

Experimental Study on Energy Harvesting Efficiency of Lead Zirconate Titanate Piezoelectric Ceramics (PZT)

  • 摘要: 为研究不同因素对压电陶瓷俘能影响规律,提高能量俘获效率,本文以锆钛酸铅压电陶瓷(lead zirconate titanate piezoelectric ceramics,PZT)为研究对象。首先,搭建实验测试平台,通过实验获得了3种不同振幅(2、6、10 mm)下PZT输出电压与激励频率的关系,得到被测样件的最佳俘能参数;其次,在对存储电路进行优化的基础上,分别将PZT以单张、双张串联、双张并联以及双路输入的方式接入存储电路,各自在最佳俘能参数下振动30 min,为存储电路中的锂电池进行充电;最后,通过对比锂电池带动二极管的时长来评估不同输入方式的俘能效率。研究结果表明,在以最佳俘能参数振动30 min后,并联方式的俘能效率最高,可使功率为60 mW的二极管持续工作120 s。
  • 图  1  压电俘能装置模型

    图  2  存储电路原理图

    图  3  实验装置说明图

    图  4  实验场景图

    图  5  存储电路图

    图  6  压电片不同输入方式

    图  7  不同振幅下激励频率与输出电压关系

    图  8  振幅2 mm、转速1200 r/min电压波形图

    图  9  振幅6 mm、转速1200 r/min电压波形图

    图  10  振幅10 mm、转速1200 r/min电压波形图

    表  1  不同接入方式的电流及输出功率

    序号输入方式电流功率
    1单路输入$ {I}_{1} $$ {P}_{1}={{I}_{1}}^{2}{R}_{0}-{P}_{0} $
    2串联输入$ {I}_{2}{=I}_{1} $$ {P}_{2}={{I}_{2}}^{2}{R}_{0}-{P}_{0} $
    3并联输入$ {I}_{3}{=2I}_{1} $$ {P}_{3}={{I}_{3}}^{2}{R}_{0}-{P}_{0} $
    4双路输入$ {I}_{4}{=2I}_{1} $$ {P}_{4}{{=I}_{4}}^{2}{R}_{0}-2{P}_{0} $
    下载: 导出CSV

    表  2  压电片参数

    名称符号
    压电片型号 PZT-52
    机电耦合系数 $ {k}_{p} $ 0.6
    $ {k}_{31} $ 0.38
    $ {k}_{33} $ 0.74
    $ {k}_{15} $ 0.72
    $ {k}_{t} $ 0.50
    相对介电常数 $ {\epsilon }_{r} $ 2100
    介电损耗 $t_g$ 0.02
    压电应变常数/10−12(m·V−1 $ {d}_{31} $ −210
    $ {d}_{33} $ 450
    $ {d}_{15} $ 710
    弹性柔顺常数/10−12(m2·N−1 $ {{s}_{11}^{E}} $ 15
    $ {{s}_{33}^{E}} $ 9
    $ {{s}_{55}^{D}} $ 22
    机械品质因数 $ {Q}_{m} $ 70
    密度 $ r $ 7.6
    居里温度 $ {T}_{c} $ 260
    体积密度/103(kg·m−3 $ \rho $ 7.5
    杨氏模量/109(N·m−2 $ {Y}_{11}^{E} $ 56
    泊松比 $ {\sigma }^{E} $ 0.36
    下载: 导出CSV

    表  3  存储电路元件参数

    编号名称代号型号封装
    1稳压芯片Max666SOP8
    2二极管D1D2D3D4IN58190805
    3二极管D5D6IN41480805
    4电解电容C125 V/47 μf直插
    5无极性电容C225 V/0.1 μf0805
    6电解电容C325 V/10 μf直插
    7锂电池B13.7 V/35 mA
    下载: 导出CSV

    表  4  部分转速下电压波形图

    振幅/mm900 r/min1200 r/min1500 r/min
    2
    6
    10
    下载: 导出CSV

    表  5  二极管工作时长

    输入方式充电时长/min二极管工作时长/s
    单路输入3038
    串联输入3028
    并联输入30120
    双路输入3081
    下载: 导出CSV
  • [1] 张旭辉, 赖正鹏, 吴中华, 等. 新型双稳态压电振动俘能系统的理论建模与实验研究[J]. 振动工程学报, 2019, 32(1): 87-96 doi: 10.16385/j.cnki.issn.1004-4523.2019.01.011

    ZHANG X H, LAI Z P, WU Z H, et al. Theoretical modeling and experimental study of a new bistable piezoelectric vibration energy harvesting system[J]. Journal of Vibration Engineering, 2019, 32(1): 87-96 (in Chinese) doi: 10.16385/j.cnki.issn.1004-4523.2019.01.011
    [2] CHEN S, EAGER D, ZHAO L Y. Enhanced frequency synchronization for concurrent aeroelastic and base vibratory energy harvesting using a softening nonlinear galloping energy harvester[J]. Journal of Intelligent Material Systems and Structures, 2022, 33(5): 687-702 doi: 10.1177/1045389X211026381
    [3] 吕艳, 张萌, 姜吴昊, 等. 采用卷积神经网络的老年人跌倒检测系统设计[J]. 浙江大学学报(工学版), 2019, 53(6): 1130-1138 doi: 10.3785/j.issn.1008-973X.2019.06.012

    LYU Y, ZHANG M, JIANG W H, et al. Design of elderly fall detection system using CNN[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(6): 1130-1138 (in Chinese) doi: 10.3785/j.issn.1008-973X.2019.06.012
    [4] GU Y H, LIU W Q, ZHAO C Y, et al. A goblet-like non-linear electromagnetic generator for planar multi-directional vibration energy harvesting[J]. Applied Energy, 2020, 266: 114846 doi: 10.1016/j.apenergy.2020.114846
    [5] FAN K Q, WANG C Y, CHEN C G, et al. A pendulum-plucked rotor for efficient exploitation of ultralow-frequency mechanical energy[J]. Renewable Energy, 2021, 179: 339-350 doi: 10.1016/j.renene.2021.06.139
    [6] XING F, JIE Y, CAO X, et al. Natural triboelectric nanogenerator based on soles for harvesting low-frequency walking energy[J]. Nano Energy, 2017, 42: 138-142 doi: 10.1016/j.nanoen.2017.10.029
    [7] CUI C M, WANG X Z, YI Z R, et al. Flexible single-electrode triboelectric nanogenerator and body moving sensor based on porous Na2CO3/polydimethylsiloxane film[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 3652-3659
    [8] WANG X, ZHOU P, SAN H S. A piezoelectric vibration energy harvester using multiple nonlinear techniques[C]//Proceedings of 2016 IEEE Sensors. Orlando: IEEE, 2016: 1-3
    [9] 朱瑞留, 董维杰, 曹陆鼎. 压电叠堆-蜂鸣片复合俘能器设计[J]. 传感器与微系统, 2022, 41(7): 69-72 + 80

    ZHU R L, DONG W J, CAO L D. Design of piezoelectric stack-buzzer composite energy harvester[J]. Transducer and Microsystem Technologies, 2022, 41(7): 69-72 + 80 (in Chinese)
    [10] 钱韦吉, 雍胜杰. 钢轨吸振器振动能量的多模态压电式俘能研究[J]. 机械科学与技术, 2021, 40(11): 1657-1663

    QIAN W J, YONG S J. Research on multi-modal piezoelectric energy harvesting technology of rail vibration absorber[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(11): 1657-1663 (in Chinese)
    [11] 宋汝君, 单小彪, 杨先海, 等. 基于压电俘能器的流体能量俘获技术研究现状[J]. 振动与冲击, 2019, 38(17): 244-250 + 275

    SONG R J, SHAN X B, YANG X H, et al. A review of fluid energy capture technology based on piezoelectric energy harvesters[J]. Journal of Vibration and Shock, 2019, 38(17): 244-250 + 275 (in Chinese)
    [12] 张允, 王战江, 蒋淑兰, 等. 振动能量收集技术的研究现状与展望[J]. 机械科学与技术, 2019, 38(7): 985-1018

    ZHANG Y, WANG Z J, JIANG S L, et al. Retrospectives and perspectives of vibration energy harvest technologies[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(7): 985-1018 (in Chinese)
    [13] 史伟杰, 杨传辉, 张添, 等. 高压气体激励式压电俘能器的设计与实验[J]. 华中科技大学学报(自然科学版), 2021, 49(12): 11-15 doi: 10.13245/j.hust.211203

    SHI W J, YANG C H, ZHANG T, et al. Design and experimental study of piezoelectric energy harvester based on high pressure gas excitation[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2021, 49(12): 11-15 (in Chinese) doi: 10.13245/j.hust.211203
    [14] 毛芹, 王涛, 郝鹏飞, 等. 基于PVDF压电片发电的特性研究[J]. 北京理工大学学报, 2012, 32(11): 1140-1144 doi: 10.3969/j.issn.1001-0645.2012.11.009

    MAO Q, WANG T, HAO P F, et al. Characteristics of power generation from PVDF piezoelectric film[J]. Transactions of Beijing Institute of Technology, 2012, 32(11): 1140-1144 (in Chinese) doi: 10.3969/j.issn.1001-0645.2012.11.009
    [15] 邹政, 谢进, 马戈, 等. 含有末端质量的竖直梁压电俘能器参数共振及其特性研究[J]. 机械科学与技术, 2021, 40(4): 508-517

    ZOU Z, XIE J, MA G, et al. Study on parametric resonance of vertical cantilevered piezoelectric energy harvester with end mass and its characteristics[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(4): 508-517 (in Chinese)
    [16] 张智娟, 倪超, 侯立群. 悬臂梁双晶压电片不同连接方式发电性能[J]. 电子器件, 2018, 41(4): 893-897 doi: 10.3969/j.issn.1005-9490.2018.04.015

    ZHANG Z J, NI C, HOU L Q. Power generation performance of cantilever beam bimorph in different connection modes[J]. Chinese Journal of Electron Devices, 2018, 41(4): 893-897 (in Chinese) doi: 10.3969/j.issn.1005-9490.2018.04.015
    [17] NAKAHIGASHI N, YAMADA H. Vibration power generation system using a piezoelectric element with a variable resistance control for optimal generated power[C]//2022 International Power Electronics Conference (IPEC-Himeji 2022- ECCE Asia). Himeji: IEEE, 2022: 906-910
    [18] 刁卫东, 潘巧生, 冯志华. 高压应力下压电叠堆静态特性研究[J]. 宁波大学学报(理工版), 2019, 32(4): 38-42

    DIAO W D, PAN Q S, FENG Z H. Static characteristics of high compressive stress on piezoelectric stacks[J]. Journal of Ningbo University (NSEE), 2019, 32(4): 38-42 (in Chinese)
    [19] XIE L H, CAI M J. An in-shoe harvester with motion magnification for scavenging energy from human foot strike[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(6): 3264-3268 doi: 10.1109/TMECH.2015.2428618
    [20] 薛至诚, 张顺毅, 惠文龙, 等. 一种螺旋悬臂梁结构压电能量收集器[J]. 微电子学, 2021, 51(5): 729-733 doi: 10.13911/j.cnki.1004-3365.200573

    XUE Z C, ZHANG S Y, HUI W L, et al. A piezoelectric energy harvester with a spiral cantilever beam structure[J]. Microelectronics, 2021, 51(5): 729-733 (in Chinese) doi: 10.13911/j.cnki.1004-3365.200573
    [21] MEIER R, KELLY N, ALMOG O, et al. A piezoelectric energy-harvesting shoe system for podiatric sensing[C]//2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago: IEEE, 2014: 622-625
    [22] JUNG W S, LEE M J, KANG M G, et al. Powerful curved piezoelectric generator for wearable applications[J]. Nano Energy, 2015, 13: 174-181 doi: 10.1016/j.nanoen.2015.01.051
    [23] 袁秋洁. 基于压电材料的振动能量收集理论及其结构分析[D]. 北京: 华北电力大学(北京), 2010

    YUAN Q J. Theory and structure analysis of vibration energy harvesting based on piezoelectric material[D]. Beijing: North China Electric Power University (Beijing), 2010 (in Chinese)
    [24] 陈楠, 刘京睿, 魏廷存. 面向压电振动能量俘获的电能管理电路综述[J]. 力学学报, 2021, 53(11): 2928-2940 doi: 10.6052/0459-1879-21-440

    CHEN N, LIU J R, WEI T C. Review of energy management circuits for piezoelectric vibration energy harvesters[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2928-2940 (in Chinese) doi: 10.6052/0459-1879-21-440
    [25] 豆高雅. 基于压电陶瓷的环境振动驱动微型压电发电装置设计[J]. 陶瓷, 2019(5): 51-63 doi: 10.3969/j.issn.1002-2872.2019.05.011

    DOU G Y. Design of micro piezoelectric generator driven by environmental vibration based on piezoelectric ceramics[J]. Ceramics, 2019(5): 51-63 (in Chinese) doi: 10.3969/j.issn.1002-2872.2019.05.011
    [26] 王岩炯. 低频多自由度压电俘能器设计研究[D]. 武汉: 华中科技大学, 2021

    WANG Y J. Design and research of low frequency multi-DOF piezoelectric energy harvester[D]. Wuhan: Huazhong University of Science and Technology, 2021 (in Chinese)
    [27] FAN K Q, TAN Q X, ZHANG Y W, et al. A monostable piezoelectric energy harvester for broadband low-level excitations[J]. Applied Physics Letters, 2018, 112(12): 123901 doi: 10.1063/1.5022599
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  182
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-15
  • 网络出版日期:  2023-02-16
  • 刊出日期:  2022-12-05

目录

    /

    返回文章
    返回