留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粗糙云模型与PROMETHEE的航发主轴轴承失效模式重要度评估

牛凯岑 邱明 李军星 许艳雷 李燕科

牛凯岑,邱明,李军星, 等. 粗糙云模型与PROMETHEE的航发主轴轴承失效模式重要度评估[J]. 机械科学与技术,2022,41(12):1965-1972 doi: 10.13433/j.cnki.1003-8728.20200538
引用本文: 牛凯岑,邱明,李军星, 等. 粗糙云模型与PROMETHEE的航发主轴轴承失效模式重要度评估[J]. 机械科学与技术,2022,41(12):1965-1972 doi: 10.13433/j.cnki.1003-8728.20200538
NIU Kaicen, QIU Ming, LI Junxing, XU Yanlei, LI Yanke. Rough Cloud Model and PROMETHEE Failure Mode Importance Evaluation for Aeroengine Spindle Bearings[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(12): 1965-1972. doi: 10.13433/j.cnki.1003-8728.20200538
Citation: NIU Kaicen, QIU Ming, LI Junxing, XU Yanlei, LI Yanke. Rough Cloud Model and PROMETHEE Failure Mode Importance Evaluation for Aeroengine Spindle Bearings[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(12): 1965-1972. doi: 10.13433/j.cnki.1003-8728.20200538

粗糙云模型与PROMETHEE的航发主轴轴承失效模式重要度评估

doi: 10.13433/j.cnki.1003-8728.20200538
基金项目: 国家重点研发计划项目 (2019YFB2004403)
详细信息
    作者简介:

    牛凯岑(1998−),硕士研究生,研究方向为滚动轴承故障诊断与状态监测,1347263287@qq.com

    通讯作者:

    邱明,教授,博士生导师,qiuming@haust.edu.cn

  • 中图分类号: X931;V46

Rough Cloud Model and PROMETHEE Failure Mode Importance Evaluation for Aeroengine Spindle Bearings

  • 摘要: 针对目前航空发动机主轴轴承关键失效模式确定困难的问题,提出了一种粗糙云模型与偏好顺序结构评估(PROMETHEE)的航发主轴轴承失效模式重要度评估方法。结合失效模式与影响分析(FMEA)方法,通过专家系统构建主轴轴承各失效模式的风险评估矩阵;运用粗糙集理论与云模型理论,将风险评估矩阵转换为粗糙云评估矩阵,描述专家评价信息中存在的主观性、模糊性和随机性问题;运用PROMETHEE计算各失效模式的流出量、流入量与净流量,根据净流量的大小对航发主轴轴承的6种失效模式进行风险排序,为制定预防措施和降低风险提供可靠依据。
  • 图  1  改进FMEA方法的框架流程图

    表  1  语言术语集

    等级语言术语
    极低
    非常低
    中低
    中等
    中高
    非常高
    极高
    下载: 导出CSV

    表  2  航发主轴轴承主要潜在失效模式

    编号失效模式形成原因预防措施
    FM1 摩擦磨损 润滑剂承载能力低;润滑剂污染;轴承装配后游隙不合理 改进轴承结构与精加工工艺;选择合适的润滑条件(润滑种类与方式等);保证清洁的工作环境,严格过滤润滑油
    FM2 锈蚀锈斑 润滑油变质等引起的电化学腐蚀;摩擦热等引起的摩擦腐蚀 按标准进行轴承的存放保管,定期做防锈处理;安装时仔细清洗轴承;选用有防腐蚀功能的润滑剂
    FM3 打滑蹭伤 高速轻载使主动套圈与滚动体间的拖动力过小 保持架采用高强度轻质材料;适当减小径向游隙;使用附着系数大的润滑油;采用外圈椭圆法
    FM4 划伤压坑 安装不当;润滑剂污染(混入磨损产生或外界进入的硬质颗粒) 保证清洁的工作环境,严格过滤润滑油;严格按照标准清洗、安装轴承;安装过程中避免污染物的掉入;改变润滑方式,如:环下供油
    FM5 疲劳剥落 次表面形成疲劳裂纹;润滑条件劣化引起表面损伤 改善润滑条件;优化材料、热处理工艺,改善表面质量
    FM6 保持架
    损坏
    其他部件有较大振动或发生偏载;保持架存在装配损伤;保持架结构设计不合理 改进结构设计;保持架采用高强度轻质材料;严格按照标准清洗、安装轴承
    下载: 导出CSV

    表  3  航发主轴轴承失效模式的风险评估矩阵

    FMiOSD
    FM1 (Ⅸ,Ⅶ,Ⅸ,Ⅷ,Ⅷ) (Ⅷ,Ⅷ,Ⅷ,Ⅶ,Ⅶ) (Ⅶ,Ⅵ,Ⅶ,Ⅵ,Ⅵ)
    FM2 (Ⅷ,Ⅸ,Ⅷ,Ⅸ,Ⅷ) (Ⅷ,Ⅶ,Ⅶ,Ⅷ,Ⅶ) (Ⅵ,Ⅶ,Ⅶ,Ⅵ,Ⅶ)
    FM3 (Ⅴ,Ⅴ,Ⅳ,Ⅴ,Ⅳ) (Ⅸ,Ⅸ,Ⅸ,Ⅷ,Ⅷ) (Ⅳ,Ⅴ,Ⅳ,Ⅴ,Ⅴ)
    FM4 (Ⅸ,Ⅷ,Ⅸ,Ⅸ,Ⅷ) (Ⅷ,Ⅷ,Ⅶ,Ⅶ,Ⅶ) (Ⅳ,Ⅲ,Ⅳ,Ⅳ,Ⅲ)
    FM5 (Ⅱ,Ⅲ,Ⅱ,Ⅲ,Ⅲ) (Ⅸ,Ⅸ,Ⅸ,Ⅷ,Ⅷ) (Ⅳ,Ⅳ,Ⅴ,Ⅴ,Ⅴ)
    FM6 (Ⅲ,Ⅲ,Ⅱ,Ⅱ,Ⅲ) (Ⅸ,Ⅷ,Ⅸ,Ⅷ,Ⅷ) (Ⅲ,Ⅲ,Ⅳ,Ⅳ,Ⅴ)
    下载: 导出CSV

    表  4  TM1的粗糙集评估矩阵

    FMiOSD
    FM1 (8.2,9) (7.6,8) (6.4,7)
    FM2 (8,8.4) (7.4,8) (6,6.6)
    FM3 (4.6,5) (8.6,9) (4,4.6)
    FM4 (8.6,9) (7.4,8) (3.6,4)
    FM5 (2,2.6) (8.6,9) (4,4.6)
    FM6 (2.6,3) (8.4,9) (3,3.8)
    下载: 导出CSV

    表  5  TM1的粗糙云评估矩阵

    FMiOSD
    FM1 (8.2,9,0.133,0.1) (7.6,8,0.067,0.1) (6.4,7,0.1,0.1)
    FM2 (8,8.4,0.067,0.1) (7.4,8,0.1,0.1) (6,6.6,0.1,0.1)
    FM3 (4.6,5,0.067,0.1) (8.6,9,0.067,0.1) (4,4.6,0.1,0.1)
    FM4 (8.6,9,0.067,0.1) (7.4,8,0.1,0.1) (3.6,4,0.067,0.1)
    FM5 (2,2.6,0.1,0.1) (8.6,9,0.067,0.1) (4,4.6,0.1,0.1)
    FM6 (2.6,3,0.067,0.1) (8.4,9,0.1,0.1) (3,3.8,0.133,0.1)
    下载: 导出CSV

    表  6  专家成员与风险元的权重

    TMi 专家权重RPN元素OSD
    TM1 0.4 客观权重 0.80 0.04 0.16
    TM2 0.2
    TM3 0.2 主观权重 0.45 0.35 0.2
    TM4 0.1
    TM5 0.1 综合权重 0.625 0.195 0.18
    下载: 导出CSV

    表  7  加权粗糙云评估矩阵

    FMiOSD
    FM1 (7.853,8.74,0.15,0.1) (7.48,7.92,0.075,0.1) (6.24,6.76,0.088,0.1)
    FM2 (8.12,8.58,0.078,0.1) (7.20,7.70,0.085,0.1) (6.30,6.80,0.085,0.1)
    FM3 (4.42,4.88,0.078,0.1) (8.48,8.92,0.075,0.1) (4.24,4.76,0.088,0.1)
    FM4 (8.42,8.88,0.078,0.1) (7.24,7.76,0.088,0.1) (3.42,3.88,0.078,0.1)
    FM5 (2.24,2.76,0.088,0.1) (8.48,8.92,0.075,0.1) (4.24,4.76,0.088,0.1)
    FM6 (2.42,2.88,0.078,0.1) (8.24,8.76,0.088,0.1) (3.23,4.08,0.143,0.1)
    下载: 导出CSV

    表  8  总体风险指数

    FMiFM1FM2FM3FM4FM5FM6
    FM1 0.366 0.263 0.356 1.683 1.336
    FM2 3.221 2.958 0 4.904 4.557
    FM3 0.670 1.036 0 1.946 1.996
    FM4 3.947 0.838 3.894 5.222 4.797
    FM5 0.670 1.036 0 0.618 0.397
    FM6 1.002 1.097 0.458 0.602 0.805
    下载: 导出CSV

    表  9  航发主轴轴承失效模式风险排序

    FMi流出量流入量净流量排序
    FM1 0.801 1.902 − 1.101 4
    FM2 3.128 0.874 2.254 2
    FM3 1.129 1.515 − 0.385 3
    FM4 3.740 0.315 3.424 1
    FM5 0.544 2.912 − 2.368 6
    FM6 0.793 2.617 − 1.824 5
    下载: 导出CSV

    表  10  3种不同FMEA方法的风险排序结果

    FMi传统FMEA方法粗糙云与TOPSIS粗糙云与PROMETHEE
    O S D RPN乘积 排序 CCi 排序 排序
    FM1 8.2 7.6 6.4 398.848 2 3.030 3 4
    FM2 8.4 7.4 6.6 410.256 1 3.052 2 2
    FM3 4.6 8.6 4.6 181.976 4 − 1.104 4 3
    FM4 8.6 7.4 3.6 229.104 3 3.646 1 1
    FM5 2.6 8.6 4.6 102.856 5 − 3.453 6 6
    FM6 2.6 8.4 3.8 82.992 6 − 3.211 5 5
    下载: 导出CSV
  • [1] 刘德林, 姜涛, 何玉怀, 等. 浅论国内航空轴承的失效问题[J]. 失效分析与预防, 2015, 10(5): 324-330 doi: 10.3969/j.issn.1673-6214.2015.05.012

    LIU D L, JIANG T, HE Y H, et al. Discussion on failure problems of aero-bearing[J]. Failure Analysis and Prevention, 2015, 10(5): 324-330 (in Chinese) doi: 10.3969/j.issn.1673-6214.2015.05.012
    [2] 许林, 谢庆红. 基于灰色理论的改进FMEA方法在装配工艺改善中的应用[J]. 现代制造工程, 2020(4): 135-141

    XU L, XIE Q H. Improved FMEA method based on grey theory in assembly process improved application[J]. Modern Manufacturing Engineering, 2020(4): 135-141 (in Chinese)
    [3] LIU H C, FAN X J, LI P, et al. Evaluating the risk of failure modes with extended MULTIMOORA method under fuzzy environment[J]. Engineering Applications of Artificial Intelligence, 2014, 34: 168-177 doi: 10.1016/j.engappai.2014.04.011
    [4] 张红旗, 邵晓东, 苏春, 等. 改进FMEA与故障传播模型混合故障诊断方法[J]. 机械科学与技术, 2017, 36(1): 23-28

    ZHANG H Q, SHAO X D, SU C, et al. Integrated fault diagnosis method based on improved FMEA and failure propagation model[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(1): 23-28 (in Chinese)
    [5] 张蓉, 王春洁. 基于FMEA和FTA的三自由度直角坐标机器人系统可靠性仿真分析[J]. 机械科学与技术, 2006, 25(6): 651-654 doi: 10.3321/j.issn:1003-8728.2006.06.005

    ZHANG R, WANG C J. Simulative research on the system reliability of a 3-DOF Cartesian-coordinate robot based on FMEA and FTA[J]. Mechanical Science and Technology for Aerospace Engineering, 2006, 25(6): 651-654 (in Chinese) doi: 10.3321/j.issn:1003-8728.2006.06.005
    [6] 崔文彬, 吴桂涛, 孙培廷, 等. 基于FMEA和模糊综合评判的船舶安全评估[J]. 哈尔滨工程大学学报, 2007, 28(3): 263-267,276 doi: 10.3969/j.issn.1006-7043.2007.03.004

    CUI W B, WU G T, SUN P T, et al. Ship safety assessment based on FMEA and fuzzy comprehensive evaluation methods[J]. Journal of Harbin Engineering University, 2007, 28(3): 263-267,276 (in Chinese) doi: 10.3969/j.issn.1006-7043.2007.03.004
    [7] 耿秀丽, 张永政. 基于犹豫模糊集的改进FMEA风险评估方法[J]. 计算机集成制造系统, 2017, 23(2): 340-348

    GENG X L, ZHANG Y Z. Improved FMEA approach for risk evaluation based on hesitant fuzzy set[J]. Computer Integrated Manufacturing Systems, 2017, 23(2): 340-348 (in Chinese)
    [8] WANG X T, YANG W M, XU Z H, et al. A normal cloud model-based method for water quality assessment of springs and its application in Jinan[J]. Sustainability, 2019, 11(8): 2248 doi: 10.3390/su11082248
    [9] 张彦如, 汪方祥, 王小巧, 等. 基于粗糙集田口质量观的失效模式与影响分析[J]. 中国机械工程, 2016, 27(14): 1892-1898,1987 doi: 10.3969/j.issn.1004-132X.2016.14.009

    ZHANG Y R, WANG F X, WANG X Q, et al. Failure mode and effect analysis based on rough set theory and Taguchi’s view of quality[J]. China Mechanical Engineering, 2016, 27(14): 1892-1898,1987 (in Chinese) doi: 10.3969/j.issn.1004-132X.2016.14.009
    [10] JIANG W, XIE C H, ZHUANG M Y, et al. Failure mode and effects analysis based on a novel fuzzy evidential method[J]. Applied Soft Computing, 2017, 57: 672-683 doi: 10.1016/j.asoc.2017.04.008
    [11] 杜晗恒, 彭翀. 基于模糊TOPSIS的FMEA方法[J]. 北京航空航天大学学报, 2016, 42(2): 368-374

    DU H H, PENG C. Failure mode and effects analysis method based on fuzzy TOPSIS[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(2): 368-374 (in Chinese)
    [12] RASHIDI K, CULLINANE K. A comparison of fuzzy DEA and fuzzy TOPSIS in sustainable supplier selection: Implications for sourcing strategy[J]. Expert Systems with Applications, 2019, 121: 266-281 doi: 10.1016/j.eswa.2018.12.025
    [13] 李元斌, 孙有朝, 李龙彪. 改进熵权逼近理想解排序法的航空发动机限寿件模糊风险评估[J]. 中国机械工程, 2018, 29(10): 1135-1140 doi: 10.3969/j.issn.1004-132X.2018.10.001

    LI Y B, SUN Y Z, LI L B. Fuzzy risk assessment of aeroengine life-limited parts based on improved entropy TOPSIS method[J]. China Mechanical Engineering, 2018, 29(10): 1135-1140 (in Chinese) doi: 10.3969/j.issn.1004-132X.2018.10.001
    [14] LIU H C, WANG L E, LI Z W, et al. Improving risk evaluation in FMEA with cloud model and hierarchical TOPSIS method[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(1): 84-95 doi: 10.1109/TFUZZ.2018.2861719
    [15] HUANG G Q, XIAO L M, ZHANG W, et al. An improving approach for failure mode and effect analysis under uncertainty environment: a case study of critical function component[J]. Quality and Reliability Engineering International, 2020, 36(6): 2119-2145 doi: 10.1002/qre.2686
    [16] 鞠萍华, 陈资, 冉琰, 等. 多粒度概率语言环境下基于PROMETHEE的改进FMEA方法[J]. 北京航空航天大学学报, 2019, 45(11): 2266-2276

    JU P H, CHEN Z, RAN Y, et al. Improved FMEA method based on PROMETHEE in multi-granular probabilistic linguistic environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2266-2276 (in Chinese)
    [17] MAITY S R, CHAKRABORTY S. Tool steel material selection using PROMETHEE II method[J]. The International Journal of Advanced Manufacturing Technology, 2015, 78(9-12): 1537-1547 doi: 10.1007/s00170-014-6760-0
    [18] 尤建新, 刘威, 杨迷影. 用于供应商风险评价的FMEA改进[J]. 同济大学学报(自然科学版), 2019, 47(1): 130-135

    YOU J X, LIU W, YANG M Y. An improved FMEA for supplier risk assessment[J]. Journal of Tongji University (Natural Science), 2019, 47(1): 130-135 (in Chinese)
    [19] 李磊, 郭歌, 李杰, 等. 基于云模型和信息公理的车辆故障模式风险评估方法[J]. 北京交通大学学报, 2019, 43(5): 126-134

    LI L, GU G, LI J, et al. Failure mode risk evaluation method based on cloud model and information axiomatic[J]. Journal of Beijing Jiaotong University, 2019, 43(5): 126-134 (in Chinese)
    [20] 陈超, 曾昭洋, 罗军, 等. 航空发动机主轴轴承失效模式分析[J]. 润滑与密封, 2020, 45(3): 126-131 doi: 10.3969/j.issn.0254-0150.2020.03.022

    CHEN C, ZENG Z Y, LUO J, et al. Failure mode analysis of aeroengine spindle bearings[J]. Lubrication Engineering, 2020, 45(3): 126-131 (in Chinese) doi: 10.3969/j.issn.0254-0150.2020.03.022
    [21] 孔德龙, 林国昌. 航空发动机主轴轴承主要损伤模式及原因分析[J]. 航空科学技术, 2011(5): 22-24 doi: 10.3969/j.issn.1007-5453.2011.05.007

    KONG D L, LIN G C. Major damage mode and analysis of main shaft bearings of aeroengine[J]. Aeronautical Science & Technology, 2011(5): 22-24 (in Chinese) doi: 10.3969/j.issn.1007-5453.2011.05.007
    [22] 周志澜, 马纯民. 航空发动机主轴轴承失效分析与预防[M]. 北京: 科学出版社, 1998: 47-52.

    ZHOU Z L, MA C M. Failure analysis and prevention of aero-engine spindle bearing[M]. Beijing: Science Press, 1998: 47-52 (in Chinese).
    [23] 方明伟, 谢向宇, 罗军, 等. 航空发动机主轴后轴承打滑损伤失效分析[J]. 润滑与密封, 2016, 41(10): 98-102 doi: 10.3969/j.issn.0254-0150.2016.10.019

    FANG M W, XIE X Y, LUO J, et al. Failure analysis of skidding damage of rear bearing aero-engine main shaft[J]. Lubrication Engineering, 2016, 41(10): 98-102 (in Chinese) doi: 10.3969/j.issn.0254-0150.2016.10.019
    [24] 李海涛, 石东丹, 王萌, 等. 航空发动机主轴圆柱滚子轴承故障分析及改进设计[J]. 轴承, 2020(3): 12-15

    LI H T, SHI D D, WANG M, et al. Fault analysis and improved design of cylindrical roller bearings for aero-engine spindle[J]. Bearing, 2020(3): 12-15 (in Chinese)
  • 加载中
图(1) / 表(10)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  147
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-04
  • 网络出版日期:  2023-02-18
  • 刊出日期:  2022-12-05

目录

    /

    返回文章
    返回