留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全向移动机器人的自抗扰轨迹跟踪控制

张相胜 黄将

张相胜,黄将. 全向移动机器人的自抗扰轨迹跟踪控制[J]. 机械科学与技术,2022,41(12):1869-1876 doi: 10.13433/j.cnki.1003-8728.20200532
引用本文: 张相胜,黄将. 全向移动机器人的自抗扰轨迹跟踪控制[J]. 机械科学与技术,2022,41(12):1869-1876 doi: 10.13433/j.cnki.1003-8728.20200532
ZHANG Xiangsheng, HUANG Jiang. Active Disturbance Rejection Trajectory Tracking Control of Omnidirectional Mobile Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(12): 1869-1876. doi: 10.13433/j.cnki.1003-8728.20200532
Citation: ZHANG Xiangsheng, HUANG Jiang. Active Disturbance Rejection Trajectory Tracking Control of Omnidirectional Mobile Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(12): 1869-1876. doi: 10.13433/j.cnki.1003-8728.20200532

全向移动机器人的自抗扰轨迹跟踪控制

doi: 10.13433/j.cnki.1003-8728.20200532
基金项目: 国家自然科学基金项目(61773182)
详细信息
    作者简介:

    张相胜(1977−),副教授,博士,研究方向为机器人系统参数辨识与智能控制,zxs_vip@163.com

  • 中图分类号: TK242

Active Disturbance Rejection Trajectory Tracking Control of Omnidirectional Mobile Robot

  • 摘要: 针对4-Mecanum轮全向移动机器人轨迹跟踪问题,设计了一种自抗扰控制器。首先对机器人的运动学与动力学模型进行分析;其次由反步法设计运动学控制器,并根据机器人在运动过程中受到未知干扰的现象,设计了改进的扩张状态观测器和动力学控制器;最后在不同扰动的作用下进行仿真。对比结果表明该控制器跟踪误差小,收敛速度快,观测器能够快速准确地估计出不确定因素对机器人的扰动并进行实时补偿,验证了该控制器具有较好的抗干扰性和鲁棒性。
  • 图  1  全向移动机器人坐标系

    图  2  直线轨迹跟踪

    图  3  ADRC直线跟踪误差曲线

    图  4  SADRC直线跟踪误差曲线

    图  5  集总扰估计曲线

    图  6  SADRC中各轮输出力矩曲线

    图  7  圆形轨迹跟踪

    图  8  双扭线轨迹跟踪

    图  9  ADRC双扭线跟踪误差曲线

    图  10  SADRC双扭线跟踪误差曲线

    图  11  SADRC双扭线位姿观测误差曲线

    图  12  SADRC中各轮输出力矩

    表  1  ODMR模型参数与控制器参数

    参数参数值
    ODMR$ a{\text{ = }}0.37\;{\text{m}} $;$ b{\text{ = }}0.3\;{\text{m}} $;$ m = 11\;{\text{kg}} $;$ R{\text{ = }}0.04\;{\text{m}} $;
    $ {\mu _i}{\text{ = }}0.2 $;${J_{\textit{z}}}{\text{ = } }3.42\;{\text{kg} } \cdot { {\text{m} }^2}$;$ {J_m}{\text{ = }}0.137\;{\text{kg}} \cdot {{\text{m}}^2} $;
    ${f_i} = 2N,(i = 1,2,3,4)$;
    控制器$ {\omega _0}{\text{ = }}20 $;$ {\omega _c}{\text{ = }}30 $;$ \delta {\text{ = }}0.005 $;$ {\alpha _1}{\text{ = }}1 $;$ {\alpha _2}{\text{ = }}0.5 $;
    $ {\alpha _3}{\text{ = 0}}{\text{.25}} $;$ {k_1} = 0.8 $;$ {k_2} = 10 $;$ {k_3} = 0.5 $;$ {K_1} = 20 $;
    $ {K_2} = 40 $;$ {K_3} = 20 $
    下载: 导出CSV

    表  2  直线轨迹评价指标

    控制器ADRCSADRC
    0 ~ 10 s$ T({e_{xy}}) $0.03570.0281
    $ T({e_\theta }) $0.01550.0126
    $ {e_{xy}}_{\max } $0.01010.0021
    $ {e_\theta }_{\max } $0.00150.0019
    10 ~ 25 s$ T({e_{xy}}) $0.35450.1992
    $ T({e_\theta }) $0.00310.0036
    $ {e_{xy}}_{\max } $0.05390.0207
    $ {e_\theta }_{\max } $0.01040.0106
    下载: 导出CSV

    表  3  双扭线轨迹评价指标

    控制器ADRCSADRC
    0 ~ 10 s $ T({e_{xy}}) $ 0.1281 0.1033
    $ T({e_\theta }) $ 0.0132 0.0154
    $ {e_{xy}}_{\max } $ 0.0104 0.0089
    $ {e_\theta }_{\max } $ 0.0019 0.0015
    10 ~ 25 s $ T({e_{xy}}) $ 0.8353 0.6165
    $ T({e_\theta }) $ 0.0322 0.0459
    $ {e_{xy}}_{\max } $ 0.0579 0.0235
    $ {e_\theta }_{\max } $ 0.0176 0.0182
    下载: 导出CSV
  • [1] 贝旭颖, 平雪良, 高文研. 纵向打滑状态下轮式移动机器人轨迹跟踪控制[J]. 中国机械工程, 2018, 29(16): 1958-1964 doi: 10.3969/j.issn.1004-132X.2018.16.011

    BEI X Y, PING X L, GAO W Y. Trajectory tracking control of wheeled mobile robots under longitudinal slipping conditions[J]. China Mechanical Engineering, 2018, 29(16): 1958-1964 (in Chinese) doi: 10.3969/j.issn.1004-132X.2018.16.011
    [2] 赵冬斌, 易建强, 邓旭玥. 全方位移动机器人结构和运动分析[J]. 机器人, 2003, 25(5): 394-398 doi: 10.3321/j.issn:1002-0446.2003.05.003

    ZHAO D B, YI J Q, DENG X Y. Structure and kinematic analysis of Omni-directional mobile robots[J]. Robot, 2003, 25(5): 394-398 (in Chinese) doi: 10.3321/j.issn:1002-0446.2003.05.003
    [3] 黄磊, 郗安民. 基于ADAMS的全方位移动机器人仿真优化分析[J]. 机械工程与自动化, 2008(3): 8-11 doi: 10.3969/j.issn.1672-6413.2008.03.003

    HUANG L, XI A M. Omni-directional wheeled mobile robot simulation and optimization analysis based on ADAMS[J]. Mechanical Engineering & Automation, 2008(3): 8-11 (in Chinese) doi: 10.3969/j.issn.1672-6413.2008.03.003
    [4] 冯剑, 张文安, 倪洪杰, 等. 轮式移动机器人轨迹跟踪的PID控制方法[J]. 信息与控制, 2017, 46(4): 385-393

    FENG J, ZHANG W A, NI H J, et al. Trajectory tracking control of wheeled mobile robots using PID control method[J]. Information and Control, 2017, 46(4): 385-393 (in Chinese)
    [5] 张鑫, 刘凤娟, 闫茂德. 基于动力学模型的轮式移动机器人自适应滑模轨迹跟踪控制[J]. 机械科学与技术, 2012, 31(1): 107-112

    ZHANG X, LIU F J, YAN M D. Dynamic model-based adaptive sliding-mode trajectory tracking control over wheeled mobile robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(1): 107-112 (in Chinese)
    [6] MOHAN B M, SINHA A. The simplest fuzzy PID controllers: mathematical models and stability analysis[J]. Soft Computing, 2006, 10(10): 961-975 doi: 10.1007/s00500-005-0023-9
    [7] 彭金柱, 王耀南, 余洪山. 基于神经网络的非完整移动机器人鲁棒跟踪控制[J]. 中国机械工程, 2008, 19(7): 823-827 doi: 10.3321/j.issn:1004-132X.2008.07.017

    PENG J Z, WANG Y N, YU H S. Neural network-based robust tracking control for nonholonomic mobile robot[J]. China Mechanical Engineering, 2008, 19(7): 823-827 (in Chinese) doi: 10.3321/j.issn:1004-132X.2008.07.017
    [8] 王立玲, 董力元, 马东, 等. 滑动与打滑条件下的轮式移动机器人自抗扰跟踪控制[J]. 控制理论与应用, 2020, 37(2): 431-438 doi: 10.7641/CTA.2019.80974

    WANG L L, DONG L Y, MA D, et al. Active disturbance rejection tracking control of wheeled mobile robots under sliding and slipping conditions[J]. Control Theory & Applications, 2020, 37(2): 431-438 (in Chinese) doi: 10.7641/CTA.2019.80974
    [9] 江亚峰, 王彬彬, 袁明新, 等. 基于自适应反演滑模的全向AGV运动控制[J]. 计算机仿真, 2019, 36(2): 348-352 doi: 10.3969/j.issn.1006-9348.2019.02.075

    JIANG Y F, WANG B B, YUAN M X, et al. Motion control for omnidirectional AGV based on adaptive backstepping sliding mode control[J]. Computer Simulation, 2019, 36(2): 348-352 (in Chinese) doi: 10.3969/j.issn.1006-9348.2019.02.075
    [10] 康升征, 吴洪涛. 全向移动机器人模糊自适应滑模控制方法研究[J]. 机械设计与制造工程, 2017, 46(3): 70-75 doi: 10.3969/j.issn.2095-509X.2017.03.014

    KANG S Z, WU H T. Research on fuzzy adaptive sliding mode control of Omni-directional mobile robot[J]. Machine Design and Manufacturing Engineering, 2017, 46(3): 70-75 (in Chinese) doi: 10.3969/j.issn.2095-509X.2017.03.014
    [11] 范其明, 吕书豪. 移动机器人的自适应神经网络滑模控制[J]. 控制工程, 2017, 24(7): 1409-1414

    FAN Q M, LYU S H. Adaptive neural network sliding mode control of mobile robots[J]. Control Engineering of China, 2017, 24(7): 1409-1414 (in Chinese)
    [12] HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906 doi: 10.1109/TIE.2008.2011621
    [13] 陈增强, 程赟, 孙明玮, 等. 线性自抗扰控制理论及工程应用的若干进展[J]. 信息与控制, 2017, 46(3): 257-266

    CHEN Z Q, CHENG Y, SUN M W, et al. Surveys on theory and engineering applications for linear active disturbance rejection control[J]. Information and Control, 2017, 46(3): 257-266 (in Chinese)
    [14] YUAN Z Y, TIAN Y X, YIN Y F, et al. Trajectory tracking control of a four mecanum wheeled mobile platform: an extended state observer-based sliding mode approach[J]. IET Control Theory & Applications, 2020, 14(3): 415-426
    [15] HUANG H C, LIN S K. A hybrid metaheuristic embedded system for intelligent vehicles using hypermutated firefly algorithm optimized radial basis function neural network[J]. IEEE Transactions on Industrial Informatics, 2019, 15(2): 1062-1069 doi: 10.1109/TII.2018.2796556
    [16] KANAYAMA Y, KIMURA Y, MIYAZAKI F, et al. A stable tracking control method for a non-holonomic mobile robot[C]//Proceedings IROS' 91: IEEE/RSJ International Workshop on Intelligent Robots and Systems' 91. Osaka: IEEE, 1991: 1236-1241
    [17] 刘金琨. 滑模变结构控制MATLAB仿真[M]. 2版. 北京: 清华大学出版社, 2012

    LIU J K. Sliding mode control design and matlab simulation[M]. 2nd ed. Beijing: Tsinghua University Press, 2012 (in Chinese)
    [18] LI J, XIA Y Q, QI X H, et al. On the necessity, scheme, and basis of the linear-nonlinear switching in active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1425-1435 doi: 10.1109/TIE.2016.2611573
    [19] ARTEAGA-PÉREZ M A, GUTIÉRREZ-GILES A. On the GPI approach with unknown inertia matrix in robot manipulators[J]. International Journal of Control, 2014, 87(4): 844-860 doi: 10.1080/00207179.2013.861080
    [20] OLGUÍN-DÍAZ E, ARECHAVALETA G, JARQUÍN G, et al. A passivity-based model-free force–motion control of underwater vehicle-manipulator systems[J]. IEEE Transactions on Robotics, 2013, 29(6): 1469-1484 doi: 10.1109/TRO.2013.2277535
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  195
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-21
  • 网络出版日期:  2023-02-16
  • 刊出日期:  2022-12-05

目录

    /

    返回文章
    返回