留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压气机叶片加工误差离散性控制研究进展综述

何智伟 李瑞宇 李湉 罗明

何智伟, 李瑞宇, 李湉, 罗明. 压气机叶片加工误差离散性控制研究进展综述[J]. 机械科学与技术, 2024, 43(7): 1101-1119. doi: 10.13433/j.cnki.1003-8728.20240079
引用本文: 何智伟, 李瑞宇, 李湉, 罗明. 压气机叶片加工误差离散性控制研究进展综述[J]. 机械科学与技术, 2024, 43(7): 1101-1119. doi: 10.13433/j.cnki.1003-8728.20240079
HE Zhiwei, LI Ruiyu, LI Tian, LUO Ming. A Review of Research Progress on Discreteness Control of Compressor Blade Machining Error[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1101-1119. doi: 10.13433/j.cnki.1003-8728.20240079
Citation: HE Zhiwei, LI Ruiyu, LI Tian, LUO Ming. A Review of Research Progress on Discreteness Control of Compressor Blade Machining Error[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1101-1119. doi: 10.13433/j.cnki.1003-8728.20240079

压气机叶片加工误差离散性控制研究进展综述

doi: 10.13433/j.cnki.1003-8728.20240079
基金项目: 

国家自然科学基金项目 U2241249

详细信息
    作者简介:

    何智伟, 硕士研究生, hezhiwei0730@mail.nwpu.edu.cn

    通讯作者:

    罗明, 教授, 博士生导师, luoming@nwpu.edu.cn

  • 中图分类号: V232.4

A Review of Research Progress on Discreteness Control of Compressor Blade Machining Error

  • 摘要: 航空发动机压气机整体叶盘通常设计为旋转周期对称结构。然而, 实际加工中同一级整体叶盘上不同叶片之间以及单个叶片自身存在的加工误差离散性会对流场参数产生不利影响。因此, 提高整体叶盘叶片加工误差一致性成为普遍关注的难题。综述了近年来针对同级叶盘不同叶片加工误差离散性对气动性能影响规律的相关研究, 以及加工过程强时变特性下误差离散度控制的相关成果。就误差离散性现象及产生原因、对性能影响规律及加工误差离散度控制方法这3个方面展开论述。最后展望了未来误差离散度加工控制方法发展趋势, 为未来相关研究工作提供参考。
  • 图  1  整体叶盘加工与设计意图的偏离[10]

    Figure  1.  Manufacturing deviation from design intent[10]

    图  2  整体叶盘叶片型线精度分析[11]

    Figure  2.  Accuracy analysis of blade profile of integral blisk[11]

    图  3  通过PDF对实测分布进行拟合[23]

    Figure  3.  Fitting of measured distribution through a PDF[23]

    图  4  前缘半径加工误差统计直方图[26]

    Figure  4.  Statistical histogram of leading edge radius machining error[26]

    图  5  叶型4个特征点的轮廓度误差统计分布[27]

    Figure  5.  Statistical distribution of profile error of four feature points of blade profile[27]

    图  6  4种叶片形状误差的概率密度统计结果[28]

    Figure  6.  Statistical results of probability density of four kinds of bade shape errors[28]

    图  7  GE E3叶尖叶型叶栅吸力面分离引起的叶片载荷扰动[34]

    Figure  7.  Blade loading perturbation caused by suction-surface separation in GE E3 tip profile cascade[34]

    图  8  GE E3叶尖叶型叶栅中由前缘流动分离引起的突尖波[34]

    Figure  8.  Spike caused by leading edge separation in GE E3 tip profile cascade[34]

    图  9  所有叶片的压力系数[10]

    Figure  9.  Pressure coefficient for all blades[10]

    图  10  实验环境下定子1和定子2下游的归一化总压力等值线[36]

    Figure  10.  Normalized total pressure contours downstream of stator 1 and stator 2 from experiment[36]

    图  11  八流道三维压力分布[39]

    Figure  11.  3D pressure distribution of one realization[39]

    图  12  性能随流道增加的变化趋势[39]

    Figure  12.  Variation trend of performance with increase of flow channel[39]

    图  13  75%叶高处和0.986无量纲流量下的激波位置[42]

    Figure  13.  Shock wave position at 75% span and non-dimensional flowrate of 0.986 [42]

    图  14  同一组随机生成安装角叶片的不同布置,平均变化0.437%[42]

    Figure  14.  Different arrangements for same set of random generated blades with average change of stagger 0.437%[42]

    图  15  切削刃的离散化和切削力的施加[56]

    Figure  15.  Discretion and application of cutting force[56]

    图  16  预测和测量的加工误差比较[70]

    Figure  16.  Comparison between predicted and measured machining errors[70]

    图  17  镜像补偿法[74]

    Figure  17.  Mirror compensation method[74]

    图  18  无应力夹具模型[78]

    Figure  18.  Unstressed clamping model[78]

    图  19  回转式辅助支撑机构[79]

    Figure  19.  Rotary auxiliary support mechanism[79]

    图  20  采用接触式测头进行在线测量

    Figure  20.  On-line measurement using a contact probe

    图  21  使用一种斜率方法预测残余应力引起的框架零件变形解析模型[92]

    Figure  21.  A slope method is used to predict the deformation analytical model of frame parts caused by residual stress[92]

    图  22  残余应力分层加载方法[100]

    Figure  22.  Layered loading method of residual stress[100]

    图  23  工序间主动控制方法示意图[107]

    Figure  23.  Schematic of in-processes active control method[107]

    图  24  薄壁零件误差在线补偿流程[114]

    Figure  24.  Online error compensation process of thin-walled parts[114]

  • [1] 丛靖梅, 莫蓉, 吴宝海, 等. 面向性能的压气机叶片铣削加工误差分析及统计[J]. 航空制造技术, 2017(15): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201715007.htm

    CONG J M, MO R, WU B H, et al. Performance oriented machining error analysis and statistic of compressor blade[J]. Aeronautical Manufacturing Technology, 2017(15): 38-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201715007.htm
    [2] 耿少娟, 张小玉, 丁林超, 等. 转子叶片加工误差对1.5级跨声速压气机气动性能的影响[J]. 推进技术, 2021, 42(1): 139-148. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202101013.htm

    GENG S J, ZHANG X Y, DING L C, et al. Effects of rotor blade manufacturing variability on 1.5 stage transonic compressor aerodynamic performance[J]. Journal of Propulsion Technology, 2021, 42(1): 139-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202101013.htm
    [3] 雷伟鹏, 樊宏周, 雍建华, 等. 叶片加工误差对压气机性能影响研究综述[J]. 风机技术, 2024, 66(2): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-FENG202402010.htm

    LEI W P, FAN H Z, YONG J H, et al. Summary of research on the influence of blade machining errors on compressor performance[J]. Chinese Journal of Turbomachinery, 2024, 66(2): 87-92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FENG202402010.htm
    [4] WILSON M J, IMREGUN M, SAYMA A I. The effect of stagger variability in gas turbine fan assemblies[J]. Journal of Turbomachinery, 2007, 129(2): 404-411. doi: 10.1115/1.2437776
    [5] HOYNIAK D, FLEETER S. Forced response analysis of an aerodynamically detuned supersonic turbomachine rotor[J]. Journal of Vibration and Acoustics, 1986, 108(2): 117-124. doi: 10.1115/1.3269311
    [6] HAWKINGS D. Multiple tone generation by transonic compressors[J]. Journal of Sound and Vibration, 1971, 17(2): 241-250. doi: 10.1016/0022-460X(71)90458-5
    [7] STRATFORD B, NEWBY D. A new look at the generation of buzz-saw noise[C]//Proceedings of the 4th Aeroacoustics Conference. Atlanta, GA, USA: AIAA, 1977: 3-5.
    [8] HAN F, SHARMA A, PALIATH U, et al. Multiple pure tone noise prediction[J]. Journal of Sound and Vibration, 2014, 333(25): 6942-6959. doi: 10.1016/j.jsv.2014.08.006
    [9] DAY I J. Stall, surge, and 75 years of research[J]. Journal of Turbomachinery, 2015, 138(1): 011001.
    [10] LEJON M, ANDERSSON N, ELLBRANT L, et al. The impact of manufacturing variations on performance of a transonic axial compressor rotor[J]. Journal of Turbomachinery, 2020, 142(8): 081009. doi: 10.1115/1.4046617
    [11] 刘秀梅, 肖贵坚, 刘智武, 等. 航空发动机整体叶盘数控砂带磨削变形行为及其试验研究[J]. 金刚石与磨料磨具工程, 2020, 40(3): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-JGSM202003005.htm

    LIU X M, XIAO G J, LIU Z W, et al. Research on deformation behavior of NC belt grinding of aero-engine blisk and its test[J]. Diamond & Abrasives Engineering, 2020, 40(3): 25-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGSM202003005.htm
    [12] 陈蔚芳, 楼佩煌, 陈华. 薄壁件加工变形主动补偿方法[J]. 航空学报, 2009, 30(3): 570-576. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200903027.htm

    CHEN W F, LOU P H, CHEN H. Active compensation methods of machining deformation of thin-walled parts[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(3): 570-576. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200903027.htm
    [13] 万敏, 张卫红. 铣削过程中误差预测与补偿技术研究进展[J]. 航空学报, 2008, 29(5): 1340-1349. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200805041.htm

    WAN M, ZHANG W H. Overviews of technique research progress of form error prediction and error compensation in milling process[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5): 1340-1349. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200805041.htm
    [14] GARZON V E, DARMOFAL D L. Impact of geometric variability on axial compressor performance[J]. Journal of Turbomachinery, 2003, 125(4): 692-703. doi: 10.1115/1.1622715
    [15] LAMB C M. Probabilistic performance-based geometric tolerancing of compressor blades[D]. Cambridge: Massachusetts Institute of Technology, 2005.
    [16] DUFFNER J D. The effects of manufacturing variability on turbine vane performance[D]. Cambridge: Massachusetts Institute of Technology, 2008.
    [17] 郑似玉, 滕金芳, 羌晓青. 叶片加工超差对高压压气机性能影响和敏感性分析[J]. 机械工程学报, 2018, 54(2): 216-224. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201802031.htm

    ZHENG S Y, TENG J F, QIANG X Q. Sensitivity analysis of manufacturing variability on high-pressure compressor performance[J]. Journal of Mechanical Engineering, 2018, 54(2): 216-224. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201802031.htm
    [18] TANG X Z, WANG Z, XIAO P, et al. Uncertainty quantification based optimization of centrifugal compressor impeller for aerodynamic robustness under stochastic operational conditions[J]. Energy, 2020, 195: 116930. doi: 10.1016/j.energy.2020.116930
    [19] ZHENG S Y, TENG J F, WU Y, et al. Impact of nonuniform stagger angle distribution on high-pressure compressor rotor performance[C]//Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Oslo, Norway: ASME, 2018: 1-13.
    [20] 姬田园, 楚武利, 张振华, 等. 叶片厚度偏差对转子性能影响的不确定性分析[J/OL]. 航空动力学报, 2023. (2023-09-04)[2024-05-14]. https://doi.org/10.13224/j.cnki.jasp.20220203.

    JI T Y, CHU W L, ZHANG Z H, et al. Uncertainty analysis of impact of blade thickness deviation on rotor performance[J/OL]. Journal of Aerospace Power, 2023. (2023-09-04)[2024-05-14]. https://doi.org/10.13224/j.cnki.jasp.20220203. (in Chinese)
    [21] 郑似玉, 滕金芳, 羌晓青. 压气机叶片扭转度加工超差分析与研究[J]. 节能技术, 2017, 35(2): 99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-JNJS201702001.htm

    ZHENG S Y, TENG J F, QIANG X Q. Numerical research of twisted variability on axial compressor performance[J]. Energy Conservation Technology, 2017, 35(2): 99-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JNJS201702001.htm
    [22] WANG J Y, YANG H L, ZHOU K, et al. Performance dispersion control of a multistage compressor based on precise identification of critical features[J]. Aerospace Science and Technology, 2022, 129: 107845. doi: 10.1016/j.ast.2022.107845
    [23] LANGE A, VOIGT M, VOGELER K, et al. Probabilistic CFD simulation of a high-pressure compressor stage taking manufacturing variability into account[C]//Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. Glasgow, UK: ASME, 2010: 617-628.
    [24] LANGE A, VOIGT M, VOGELER K, et al. Principal component analysis on 3D scanned compressor blades for probabilistic CFD simulation[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Honolulu, USA: AIAA, 2012: 23-26.
    [25] PANIZZA A, VALENTE R, RUBINO D, et al. Impact of manufacturing variability on the aerodynamic performance of a centrifugal compressor stage with curvilinear blades[C]//ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Seoul, South Korea: ASME, 2016: 1-14.
    [26] 王浩浩, 高丽敏, 杨光, 等. 一种鲁棒的数据驱动不确定性量化方法及在压气机叶栅中的应用[J]. 航空学报, 2023, 44(17): 128169. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202317008.htm

    WANG H H, GAO L M, YANG G, et al. Robust data-driven uncertainty quantification method and its application in compressor cascade[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 128169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202317008.htm
    [27] 刘佳鑫, 于贤君, 孟德君, 等. 高压压气机出口级叶型加工偏差特征及其影响[J]. 航空学报, 2021, 42(2): 423796. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202102030.htm

    LIU J X, YU X J, MENG D J, et al. State and effect of manufacture deviations of compressor blade in high-pressure compressor outlet stage[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 423796. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202102030.htm
    [28] 任宇斌, 谭淼龙, 吴宝海, 等. 基于自适应带宽核密度估计的压气机叶片加工误差统计分析方法[J/OL]. 推进技术, 2023: 1-11. (2023-08-31)[2024-05-14]. https://doi.org/10.13675/j.cnki.tjjs.2304013.

    REN Y B, TAN M L, WU B H, et al. Statistical analysis method of compressor blade machining error based on adaptive bandwidth kernel density estimation[J/OL]. Journal of Propulsion Technology, 2023: 1-11. (2023-08-31)[2024-05-14]. https://doi.org/10.13675/j.cnki.tjjs.2304013.
    [29] 肖贵坚, 黄云, 伊浩. 面向型面精度一致性的整体叶盘砂带磨削新方法及实验研究[J]. 航空学报, 2016, 37(5): 1666-1676. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201605028.htm

    XIAO G J, HUANG Y, YI H. Experimental research of new belt grinding method for consistency of blisk profile and surface precision[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5): 1666-1676. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201605028.htm
    [30] 中国航空工业总公司. HB 5647-1998叶片叶型的标注、公差与叶身表面粗糙度[S]. 北京: 中国航空工业总公司, 1999: 15-25.

    Gas Turbine Establishment. HB 5647-1998 Marking, tolerances and surface roughness of the blade[S]. Beijing: Aviation Industry Corporation of China, 1999: 15-25. (in Chinese)
    [31] ALLEN O, PARDO A C, HALL C A. An experimental investigation into the impacts of varying the circumferential extent of tip-low total pressure distortion on fan stability[C]//Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. Virtual, Online: ASME, 2021: 1-13.
    [32] PEROVIC D, HALL C A, GUNN E J. Stall inception in a boundary layer ingesting fan[J]. Journal of Turbomachinery, 2019, 141(9): 091007. doi: 10.1115/1.4043644
    [33] WEICHERT S, DAY I. Detailed measurements of spike formation in an axial compressor[J]. Journal of Turbomachinery, 2013, 136(5): 051006.
    [34] PULLA G, YOUNG A M, DAY I J, et al. Origins and structure of spike-type rotating stall[J]. Journal of Turbomachinery, 2015, 137(5): 051007. doi: 10.1115/1.4028494
    [35] LI J C, GENG S J, DU J, et al. Circumferentially propagating characteristic dominated by unsteady tip leakage flow in axial flow compressors[J]. Aerospace Science and Technology, 2019, 85(4): 529-543.
    [36] LOU F Y, DOUGLAS R, MATTHEWS III N J, et al. Accounting for circumferential flow nonuniformity in a multistage axial compressor[J]. Journal of Turbomachinery, 2023, 145(7): 071016. doi: 10.1115/1.4056933
    [37] LANGE A, VOGELER K GVMMER V, et al. Introduction of a parameter based compressor blade model for considering measured geometry uncertainties in numerical simulation[C]//Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air. Orlando, FL, USA: ASME, 2009: 1113-1123.
    [38] LANGE A, VOIGT M, VOGELER K, et al. Impact of manufacturing variability on multistage high-pressure compressor performance[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(11): 112601. doi: 10.1115/1.4007167
    [39] LANGE A, VOIGT M, VOGELER K, et al. Impact of manufacturing variability and nonaxisymmetry on high-pressure compressor stage performance[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(3): 032504. doi: 10.1115/1.4004404
    [40] WANG F, DI MARE L. Analysis of transonic bladerows with non-uniform geometry using the spectral method[J]. Journal of Turbomachinery, 2021, 143(12): 121012. doi: 10.1115/1.4051710
    [41] ZHANG W H, ZOU Z P, PAN S N, et al. Impact of stagger angle nonuniformity on turbine aerodynamic performance[J]. Journal of Thermal Science, 2010, 19(5): 465-472. doi: 10.1007/s11630-010-0410-0
    [42] SURIYANARAYANAN V, RENDU Q, VAHDATI M, et al. Effect of manufacturing tolerance in flow past a compressor blade[J]. Journal of Turbomachinery, 2022, 144(4): 041005. doi: 10.1115/1.4052600
    [43] BUDAK E. Flexible milling force model for improved surface error predictions[C]//Proceedings of the 1992 Engineering System Design and Analysis. Istanbul, Turkey, 1992: 89-94.
    [44] RATCHEV S, LIU S, BECKER A A. Error compensation strategy in milling flexible thin-wall parts[J]. Journal of Materials Processing Technology, 2005, 162-163: 673-681. doi: 10.1016/j.jmatprotec.2005.02.192
    [45] SUTHERLAND J W, DEVOR R E. An improved method for cutting force and surface error prediction in flexible end milling systems[J]. Journal of Manufacturing Science and Engineering, 1986, 108(4): 269-279.
    [46] BUDAK E, ALTINTAS Y. Modeling and avoidance of static form errors in peripheral milling of plates[J]. International Journal of Machine Tools and Manufacture, 1995, 35(3): 459-476. doi: 10.1016/0890-6955(94)P2628-S
    [47] WAN M, ZHANG W H, TAN G, et al. Systematic simulation procedure of peripheral milling process of thin-walled workpiece[J]. Journal of Materials Processing Technology, 2008, 197(1-3): 122-131. doi: 10.1016/j.jmatprotec.2007.06.005
    [48] CHEN W F, XUE J B, TANG D B, et al. Deformation prediction and error compensation in multilayer milling processes for thin-walled parts[J]. International Journal of Machine Tools and Manufacture, 2009, 49(11): 859-864. doi: 10.1016/j.ijmachtools.2009.05.006
    [49] QI H J, TIAN Y L, ZHANG D W. Machining forces prediction for peripheral milling of low-rigidity component with curved geometry[J]. The International Journal of Advanced Manufacturing Technology, 2013, 64(9): 1599-1610.
    [50] WIMMER S, HUNYADI P, ZAEH M F. A numerical approach for the prediction of static surface errors in the peripheral milling of thin-walled structures[J]. Production Engineering, 2019, 13(3-4): 479-488. doi: 10.1007/s11740-019-00901-7
    [51] RATCHEV S, LIU S, HUANG W, et al. An advanced FEA based force induced error compensation strategy in milling[J]. International Journal of Machine Tools and Manufacture, 2006, 46(5): 542-551. doi: 10.1016/j.ijmachtools.2005.06.003
    [52] WAN M, ZHANG W H, QIU K P, et al. Numerical prediction of static form errors in peripheral milling of thin-walled workpieces with irregular meshes[J]. Journal of Manufacturing Science and Engineering, 2005, 127(1): 13-22. doi: 10.1115/1.1828055
    [53] WAN M, ZHANG W H. Calculations of chip thickness and cutting forces in flexible end milling[J]. The International Journal of Advanced Manufacturing Technology, 2006, 29(7-8): 637-647. doi: 10.1007/s00170-005-2572-6
    [54] WAN M, ZHANG W H, QIN G H, et al. Strategies for error prediction and error control in peripheral milling of thin-walled workpiece[J]. International Journal of Machine Tools and Manufacture, 2008, 48(12-13): 1366-1374. doi: 10.1016/j.ijmachtools.2008.05.005
    [55] KANG Y G, WANG Z Q. Two efficient iterative algorithms for error prediction in peripheral milling of thin-walled workpieces considering the in-cutting chip[J]. International Journal of Machine Tools and Manufacture, 2013, 73: 55-61. doi: 10.1016/j.ijmachtools.2013.06.001
    [56] SUN Y W, JIANG S L. Predictive modeling of chatter stability considering force-induced deformation effect in milling thin-walled parts[J]. International Journal of Machine Tools and Manufacture, 2018, 135(2): 38-52.
    [57] RATCHEV S, NIKOV S, MOUALEK I. Material removal simulation of peripheral milling of thin wall low-rigidity structures using FEA[J]. Advances in Engineering Software, 2004, 35(8-9): 481-491. doi: 10.1016/j.advengsoft.2004.06.011
    [58] RATCHEV S, HUANG W, LIU S, et al. Modelling and simulation environment for machining of low-rigidity components[J]. Journal of Materials Processing Technology, 2004, 153-154: 67-73. doi: 10.1016/j.jmatprotec.2004.04.301
    [59] TANG A J, LIU Z Q. Deformations of thin-walled plate due to static end milling force[J]. Journal of Materials Processing Technology, 2008, 206(1-3): 345-351. doi: 10.1016/j.jmatprotec.2007.12.089
    [60] TANG Z T, YU T, XU L Q, et al. Machining deformation prediction for frame components considering multifactor coupling effects[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(1): 187-196.
    [61] RAI J K, XIROUCHAKIS P. Finite element method based machining simulation environment for analyzing part errors induced during milling of thin-walled components[J]. International Journal of Machine Tools and Manufacture, 2008, 48(6): 629-643. doi: 10.1016/j.ijmachtools.2007.11.004
    [62] RAI J K, XIROUCHAKIS P. FEM-based prediction of workpiece transient temperature distribution and deformations during milling[J]. The International Journal of Advanced Manufacturing Technology, 2009, 42(5-6): 429-449. doi: 10.1007/s00170-008-1610-6
    [63] LI Z L, TUYSUZ O, ZHU L M, et al. Surface form error prediction in five-axis flank milling of thin-walled parts[J]. International Journal of Machine Tools and Manufacture, 2018, 128: 21-32. doi: 10.1016/j.ijmachtools.2018.01.005
    [64] LI P F, LIU Y, GONG Y D, et al. New deformation prediction of micro thin-walled structures by iterative FEM[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(5-8): 2027-2040. doi: 10.1007/s00170-017-1356-0
    [65] GE G Y, DU Z C, YANG J G. Rapid prediction and compensation method of cutting force-induced error for thin-walled workpiece[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(11-12): 5453-5462. doi: 10.1007/s00170-020-05050-1
    [66] DITTRICH M A, UHLICH F, DENKENA B. Self- optimizing tool path generation for 5-axis machining processes[J]. CIRP Journal of Manufacturing Science and Technology, 2019, 24: 49-54. doi: 10.1016/j.cirpj.2018.11.005
    [67] CAO L, ZHANG X M, HUANG T, et al. Online monitoring machining errors of thin-walled workpiece: A knowledge embedded sparse Bayesian regression approach[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(3): 1259-1270. doi: 10.1109/TMECH.2019.2912195
    [68] ZHANG Z L, QI Y, CHENG Q, et al. Machining accuracy reliability during the peripheral milling process of thin-walled components[J]. Robotics and Computer-Integrated Manufacturing, 2019, 59: 222-234. doi: 10.1016/j.rcim.2019.04.002
    [69] ZHAO Z W, LI Y G, LIU C Q, et al. On-line part deformation prediction based on deep learning[J]. Journal of Intelligent Manufacturing, 2020, 31(3): 561-574. doi: 10.1007/s10845-019-01465-0
    [70] SUN H, PENG F Y, ZHOU L, et al. A hybrid driven approach to integrate surrogate model and Bayesian framework for the prediction of machining errors of thin-walled parts[J]. International Journal of Mechanical Sciences, 2021, 192: 106111. doi: 10.1016/j.ijmecsci.2020.106111
    [71] RATCHEV S, LIU S, HUANG W, et al. Milling error prediction and compensation in machining of low-rigidity parts[J]. International Journal of Machine Tools and Manufacture, 2004, 44(15): 1629-1641. doi: 10.1016/j.ijmachtools.2004.06.001
    [72] ZUO X Y, ZHANG C J, LI H J, et al. Error analysis and compensation in machining thin-walled workpieces based on the inverse reconstruction model[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(5-8): 2369-2377. doi: 10.1007/s00170-017-1365-z
    [73] BERA T C, DESAI K A, RAO P V M. Error compensation in flexible end milling of tubular geometries[J]. Journal of Materials Processing Technology, 2011, 211(1): 24-34. doi: 10.1016/j.jmatprotec.2010.08.013
    [74] GAO Y Y, MA J W, JIA Z Y, et al. Tool path planning and machining deformation compensation in high-speed milling for difficult-to-machine material thin-walled parts with curved surface[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(9): 1757-1767.
    [75] WANG L P, SI H. Machining deformation prediction of thin-walled workpieces in five-axis flank milling[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(9-12): 4179-4193. doi: 10.1007/s00170-018-2248-7
    [76] SI H, WANG L P. Error compensation in the five-axis flank milling of thin-walled workpieces[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233(4): 1224-1234. doi: 10.1177/0954405418780163
    [77] HAO Q L, YANG Q. A self-adaptive auxiliary fixture for deformation control in blade machining[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(5-6): 1415-1423. doi: 10.1007/s00170-020-06171-3
    [78] YU J H, CHEN Z T, JIANG Z P. A control process for machining distortion by using an adaptive dual-sphere fixture[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(9-12): 3463-3470. doi: 10.1007/s00170-016-8470-2
    [79] 郑志阳, 张阳, 张钊, 等. 基于GA--VR的薄壁叶片辅助支撑布局优化方法[J]. 航空学报, 2023, 44(4): 426805. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202304019.htm

    ZHENG Z Y, ZHANG Y, ZHANG Z, et al. Layout optimization of auxiliary support for thin-walled blade based on GA-SVR[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 426805. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202304019.htm
    [80] WANG J, IBARAKI S, MATSUBARA A. A cutting sequence optimization algorithm to reduce the workpiece deformation in thin-wall machining[J]. Precision Engineering, 2017, 50: 506-514. doi: 10.1016/j.precisioneng.2017.07.006
    [81] DU Z C, ZHANG D, HOU H F, et al. Peripheral milling force induced error compensation using analytical force model and APDL deformation calculation[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(9-12): 3405-3417. doi: 10.1007/s00170-016-9052-z
    [82] MA J W, HE G Z, LIU Z, et al. Instantaneous cutting-amount planning for machining deformation homogenization based on position-dependent rigidity of thin-walled surface parts[J]. Journal of Manufacturing Processes, 2018, 34: 401-411. doi: 10.1016/j.jmapro.2018.05.027
    [83] ALTINTAS Y, TUYSUZ O, HABIBI M, et al. Virtual compensation of deflection errors in ball end milling of flexible blades[J]. CIRP Annals, 2018, 67(1): 365-368. doi: 10.1016/j.cirp.2018.03.001
    [84] LI Z L, ZHU L M. Compensation of deformation errors in five-axis flank milling of thin-walled parts via tool path optimization[J]. Precision Engineering, 2019, 55(90): 77-87.
    [85] HAO X Z, LI Y G, CHENG Y H, et al. A time-varying geometry modeling method for parts with deformation during machining process[J]. Journal of Manufacturing Systems, 2020, 55(7): 15-29.
    [86] HUANG N D, BI Q Z, WANG Y H, et al. 5-Axis adaptive flank milling of flexible thin-walled parts based on the on-machine measurement[J]. International Journal of Machine Tools and Manufacture, 2014, 84: 1-8. doi: 10.1016/j.ijmachtools.2014.04.004
    [87] WANG G, LI W L, TONG G, et al. Improving the machining accuracy of thin-walled parts by online measuring and allowance compensation[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(5-8): 2755-2763. doi: 10.1007/s00170-017-0358-2
    [88] WANG Y Q, HOU B, WANG F B, et al. Research on a thin-walled part manufacturing method based on information-localizing technology[J]. Proceedings of the Institution of Mechanical Engineers, Part C. Journal of Mechanical Engineering Science, 2017, 231(22): 4099-4109. doi: 10.1177/0954406216661209
    [89] 罗明, 张定华, 张莹, 等. 自适应加工技术及应用[M]. 武汉: 武汉理工大学出版社, 2020.

    LUO M, ZHANG D H, ZHANG Y, et al. Adaptive machining technology and applications[M]. Wuhan: Wuhan University of Technology Press, 2020. (in Chinese)
    [90] 黄晓明, 孙杰, 李剑峰. 基于刚度与应力演变机制的航空整体结构件加工变形预测理论建模[J]. 机械工程学报, 2017, 53(9): 201-208. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201709024.htm

    HUANG X M, SUN J, LI J F. Mathematical modeling of aeronautical monolithic component machining distortion based on stiffness and residual stress evolvement[J]. Journal of Mechanical Engineering, 2017, 53(9): 201-208. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201709024.htm
    [91] GAO H J, ZHANG Y D, WU Q, et al. An analytical model for predicting the machining deformation of a plate blank considers biaxial initial residual stresses[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(1-4): 1473-1486. doi: 10.1007/s00170-017-0528-2
    [92] WANG Z B, SUN J F, LIU L B, et al. An analytical model to predict the machining deformation of frame parts caused by residual stress[J]. Journal of Materials Processing Technology, 2019, 274(2): 116282.
    [93] LI B H, DENG H B, HUI D, et al. A semi-analytical model for predicting the machining deformation of thin-walled parts considering machining-induced and blank initial residual stress[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(1-2): 139-161. doi: 10.1007/s00170-020-05862-1
    [94] 梅中义, 王运巧, 范玉青. 飞机结构件数控加工变形控制研究与仿真[J]. 航空学报, 2005, 26(2): 234-239. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB20050200L.htm

    MEI Z Y, WANG Y Q, FAN Y Q. Researching and simulating deformation of aerocraft structure part in NC machining[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(2): 234-239. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB20050200L.htm
    [95] MARUSICH T D, USUI S, TERAUDS K, et al. Finite element modelling of part distortion[C]//Proceedings of the 2nd International Conference in Distortion Engineering. Berlin, Heidelberg: Springer, 2008: 133-142.
    [96] CERUTTI X, ARSENE S, MOCELLIN K. Prediction of machining quality due to the initial residual stress redistribution of aerospace structural parts made of low-density aluminium alloy rolled plates[J]. International Journal of Material Forming, 2016, 9(5): 677-690. doi: 10.1007/s12289-015-1254-7
    [97] CERUTTI X, MOCELLIN K. Influence of the machining sequence on the residual stress redistribution and machining quality: Analysis and improvement using numerical simulations[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(1-4): 489-503. doi: 10.1007/s00170-015-7521-4
    [98] JAYANTI S, REN D, ERICKSON E, et al. Predictive modeling for tool deflection and part distortion of large machined components[J]. Procedia CIRP, 2013, 12: 37-42. doi: 10.1016/j.procir.2013.09.008
    [99] 余伟. 基于残余应力的航空薄壁件加工变形分析[D]. 南京: 南京航空航天大学, 2004.

    YU W. Machining deformation analysis of the thin-walled structure components in aero industries based on the residual stress[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2004. (in Chinese)
    [100] 田荣鑫, 刘维伟, 姚倡锋, 等. 薄壁构件单面铣削残余应力变形有限元模拟与试验研究[J]. 航空精密制造技术, 2015, 51(6): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZJ201506001.htm

    TIAN R X, LIU W W, YAO C F, et al. Study on finite element simulation and experiment of distortion of residual stress during single side milling of thin-walled parts[J]. Aviation Precision Manufacturing Technology, 2015, 51(6): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJZJ201506001.htm
    [101] SIEBENALER S P, MELKOTE S N. Prediction of workpiece deformation in a fixture system using the finite element method[J]. International Journal of Machine Tools and Manufacture, 2006, 46(1): 51-58. doi: 10.1016/j.ijmachtools.2005.04.007
    [102] LI B Z, JIANG X H, YANG J G, et al. Effects of depth of cut on the redistribution of residual stress and distortion during the milling of thin-walled part[J]. Journal of Materials Processing Technology, 2015, 216(3): 223-233.
    [103] HUANG K, YANG W Y, YE X M. Adjustment of machining-induced residual stress based on parameter inversion[J]. International Journal of Mechanical Sciences, 2018, 135: 43-52. doi: 10.1016/j.ijmecsci.2017.11.014
    [104] ZHANG C W, HAN F Y, ZHANG W. A cutting sequence optimization method based on tabu search algorithm for complex parts machining[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233(3): 745-755. doi: 10.1177/0954405417752527
    [105] HAO X Z, LI Y G, LI M Q, et al. A part deformation control method via active pre-deformation based on online monitoring data[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(5-8): 2681-2692. doi: 10.1007/s00170-019-04127-w
    [106] HAO X Z, LI Y G, CHEN G X, et al. 6+X locating principle based on dynamic mass centers of structural parts machined by responsive fixtures[J]. International Journal of Machine Tools and Manufacture, 2018, 125: 112-122. doi: 10.1016/j.ijmachtools.2017.11.006
    [107] ZHANG Z X, LUO M, TANG K, et al. A new in-processes active control method for reducing the residual stresses induced deformation of thin-walled parts[J]. Journal of Manufacturing Processes, 2020, 59(1-4): 316-325.
    [108] 张仲玺, 王帅钦, 赵慧娟, 等. 薄壁零件残余应力演化机理及变形控制方法[J/OL]. 航空学报, 2023: 1-12. (2023-12-06)[2024-04-08]. http://kns.cnki.net/kcms/detail/11.1929.V.20231205.1534.002.html.

    ZHANG Z X, WANG S Q, ZHAO H J, et al. Residual stresses evolution mechanism of thin-walled component and deformation control method[J/OL]. Acta Aeronautica et Astronautica Sinica, 2023: 1-12. (2023-12-06)[2024-04-08]. http://kns.cnki.net/kcms/detail/11.1929.V.20231205.1534.002.html. (in Chinese)
    [109] TSAI M P, TSAI N C, YEH C W. On milling of thin-wall conical and tubular workpieces[J]. Mechanical Systems and Signal Processing, 2016, 72-73: 395-408. doi: 10.1016/j.ymssp.2015.10.009
    [110] LIU C Q, LI Y G, SHEN W M. A real time machining error compensation method based on dynamic features for cutting force induced elastic deformation in flank milling[J]. Machining Science and Technology, 2018, 22(5): 766-786. doi: 10.1080/10910344.2017.1402933
    [111] WANG G F, YANG X H, WANG Z. On-line deformation monitoring of thin-walled parts based on least square fitting method and lifting wavelet transform[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(9): 4237-4246.
    [112] DIEZ E, PEREZ H, MARQUEZ J, et al. Feasibility study of in-process compensation of deformations in flexible milling[J]. International Journal of Machine Tools and Manufacture, 2015, 94: 1-14. doi: 10.1016/j.ijmachtools.2015.03.008
    [113] WANG X Z, BI Q Z, ZHU L M, et al. Improved forecasting compensatory control to guarantee the remaining wall thickness for pocket milling of a large thin-walled part[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(5): 1677-1688.
    [114] ZHAO X, ZHENG L Y, ZHANG Y H. Online first-order machining error compensation for thin-walled parts considering time-varying cutting condition[J]. Journal of Manufacturing Science & Engineering, 2022, 144(2): 021006.
    [115] 张定华, 罗明, 吴宝海, 等. 航空复杂薄壁零件智能加工技术[M]. 武汉: 华中科技大学出版社, 2020.

    ZHANG D H, LUO M, WU B H, et al. Intelligent machining technology of aviation complex thin-walled parts[M]. Wuhan: Huazhong University of Science & Technology Press, 2020. (in Chinese)
  • 加载中
图(24)
计量
  • 文章访问数:  1150
  • HTML全文浏览量:  12
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-24
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回