留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑移动边界约束作用的薄壁件铣削动特性研究

王小娟 宋清华 刘战强 王兵

王小娟, 宋清华, 刘战强, 王兵. 考虑移动边界约束作用的薄壁件铣削动特性研究[J]. 机械科学与技术, 2024, 43(7): 1120-1131. doi: 10.13433/j.cnki.1003-8728.20240078
引用本文: 王小娟, 宋清华, 刘战强, 王兵. 考虑移动边界约束作用的薄壁件铣削动特性研究[J]. 机械科学与技术, 2024, 43(7): 1120-1131. doi: 10.13433/j.cnki.1003-8728.20240078
WANG Xiaojuan, SONG Qinghua, LIU Zhanqiang, WANG Bing. Research of Dynamic Characteristics in Milling of Thin-walled Parts Under Moving Boundary Constraint[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1120-1131. doi: 10.13433/j.cnki.1003-8728.20240078
Citation: WANG Xiaojuan, SONG Qinghua, LIU Zhanqiang, WANG Bing. Research of Dynamic Characteristics in Milling of Thin-walled Parts Under Moving Boundary Constraint[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1120-1131. doi: 10.13433/j.cnki.1003-8728.20240078

考虑移动边界约束作用的薄壁件铣削动特性研究

doi: 10.13433/j.cnki.1003-8728.20240078
基金项目: 

国家自然科学基金项目 52275445

山东省重点研发计划项目 202228125

详细信息
    作者简介:

    王小娟, 博士研究生, wxjuan@mail.sdu.edu.cn

    通讯作者:

    宋清华, 教授, 博士生导师, ssinghua@sdu.edu.cn

  • 中图分类号: TH164

Research of Dynamic Characteristics in Milling of Thin-walled Parts Under Moving Boundary Constraint

  • 摘要: 针对薄壁件铣削过程工件约束边界复杂及动特性难预测等问题, 创新性的提出了接触移动边界约束的概念, 深入研究了接触移动边界约束对系统动特性的影响规律。首先, 建立了考虑刀-工接触移动边界约束作用的薄板切削过程动力学模型, 提取刀-工接触区域, 分析了接触刚度力和阻尼力与接触参数的复杂影响关系。其次, 预测了任意接触移动边界约束作用的薄板动态响应, 形成了更为全面地任意边界约束选择方案, 包括接触移动边界条件和经典边界条件。基于薄板理论建立系统运动学方程, 综合考虑包括移动边界约束产生的能量项、常规任意边界约束产生的能量项以及薄板变形产生的能量项的组合。最后, 通过不同案例以及有限元法, 与现有文献中的数值、解析和实验等方法获得的结果作了大量对比, 证明了本文提出方法的准确性。结果表明, 接触移动约束效应对系统动态特性的影响不可忽视。
  • 图  1  刀-工接触移动边界约束铣削系统模型

    Figure  1.  Model of milling system with tool-workpiece contact moving boundary constraint

    图  2  平衡状态下接触参数、切削深度的计算结果

    Figure  2.  Calculation results of contact parameters and cutting depth in equilibrium state

    图  3  不同接触边界移动速度对薄板响应影响(边界条件: SFSF)

    Figure  3.  Effects of different contact response of thin plate boundary moving speed on(boundary condition: SFSF)

    图  4  不同长厚比薄板在不同移动速度下的响应

    Figure  4.  Responses of thin plates with different length to thickness ratios at different moving speeds

    图  5  薄板在不同接触刚度下的动力响应

    Figure  5.  Dynamic response of thin plate under different contact stiffness

    图  6  悬臂板在不同移动边界约束位置的前4阶模态(边界条件: FCFF)

    Figure  6.  First four modes of thin plate under different moving boundary constraints positions(boundary condition: FCFF)

    图  7  简支-自由板在不同移动边界约束位置的前4阶模态(边界条件: SFSF)

    Figure  7.  First four modes of thin plate under different moving boundary constraints positions obtained(boundary conditions: SFSF)

    图  8  FEM获得的悬臂板在不同移动边界约束位置的前4阶模态(边界条件: FCFF)

    Figure  8.  First four modes of thin plate under different moving boundary constraints positions obtained by FEM (boundary conditions: FCFF)

    图  9  FEM悬臂板在不同移动边界约束位置的前4阶模态(边界条件: SFSF)

    Figure  9.  First four modes of thin plate under different moving boundary constraint positions obtained by FEM (boundary conditions: SFSF)

    表  1  不同边界约束的弹簧系数组合

    Table  1.   Combination of spring coefficients with different boundary constraints

    约束方式 边界1 边界2 边界3 边界4
    Mv kct
    kcr
    kct
    kcr
    kct
    kcr
    kct
    kcr
    kct
    kcr
    F kt
    kr
    0
    0
    0
    0
    0
    0
    0
    0
    S kt
    kr

    0

    0

    0

    0
    C kt
    kr




    G kt
    kr
    0
    0
    0
    0
    下载: 导出CSV

    表  2  梁-板的几何及物理参数

    Table  2.   Geometric and physical parameters of beam-plate

    参数 数值 参数 数值
    长度L/m 0.103 60 密度ρ/(kg·m-3) 10 686.9
    宽度W/m 0.006 35 弹性模量E/GPa 206.8
    厚度h/m 0.006 35 泊松比υ 0.29
    下载: 导出CSV

    表  3  不同移动速度下的动态放大系数的对比

    Table  3.   Comparison of dynamic amplitude factor with different moving velocity

    vF(m·s-1) 本文方法 文献[23] 文献[30] 文献[11] 文献[31]
    15.6 1.063 1.063 1.063 1.045 1.025
    31.2 1.124 1.127 1.151 1.350 1.121
    62.4 1.273 1.275 1.281 1.273 1.258
    93.6 1.580 1.586 1.586 1.572 1.572
    124.8 1.705 1.708 1.704 1.704 1.701
    156.0 1.721 1.729 1.716 1.716 1.719
    250.0 1.530 1.530 1.542 1.542 1.548
    下载: 导出CSV

    表  4  不同接触刚度的局部约束边界条件

    Table  4.   Boundary conditions of local constraints for different contact stiffness

    案例 a b c d
    接触刚度KC/(N·m-1) 103 105 107 109
    局部约束边界(y=W) x=0-L, x=0-L/2, x=L/2-L
    下载: 导出CSV

    表  5  方形板的几何及物理参数

    Table  5.   Geometric and physical parameters of square plate

    长度L/m 宽度W/m 厚度h/m 密度ρ/(kg·m-3) 弹性模量E/GPa 泊松比υ
    1 1 0.065 5 7 850 200 0.3
    下载: 导出CSV

    表  6  薄板前10阶固有频率

    Table  6.   First ten natural frequencies of thin plate Hz

    本文方法 有限元法 不考虑刀工接触约束
    阶数 x1 x2 x3 x4 x1 x2 x3 x4
    1 253.48 436.57 337.70 254.05 250.48 433.57 337.70 254.05 147.87
    2 482.47 498.76 601.10 502.67 478.47 495.76 601.10 502.67 427.04
    3 779.13 1 038.96 1 006.73 1 001.28 773.13 1 036.96 1 006.73 1 001.28 597.94
    4 1 223.58 1 566.24 1 453.80 1 395.21 1 220.58 1 563.24 1 453.80 1 395.21 1 000.45
    5 1 390.86 1 742.55 1 806.74 1 720.70 1 386.86 1 742.55 1 806.74 1 720.70 1 352.74
    6 1 696.17 1 829.70 1 884.31 1 840.73 1 692.17 1 829.70 1 881.31 1 840.73 1 631.89
    7 2 022.87 2 396.55 2 385.69 2 358.17 2 019.87 2 396.55 2 381.29 2 358.17 1 808.63
    8 2 177.60 2 917.42 2 919.46 2 933.91 2 173.60 2 917.42 2 916.46 2 933.91 2 267.03
    10 2 695.69 3 241.95 3 221.78 3 209.80 2 691.69 3 241.95 3 221.78 3 209.80 2 410.25
    下载: 导出CSV
  • [1] GARG A, BELARBI M O, CHALAK H D, et al. A review of the analysis of sandwich FGM structures[J]. Composite Structures, 2021, 258: 113427. doi: 10.1016/j.compstruct.2020.113427
    [2] KARAMANLI A. Transient vibration analysis of strain gradient multi-directional functionally graded microplates under a moving concentrated load[J]. Composite Structures, 2023, 308: 116678. doi: 10.1016/j.compstruct.2023.116678
    [3] ABAD F, ROUZEGAR J, LOTFIAN S. Application of the exact spectral element method in the analysis of the smart functionally graded plate[J]. Steel and Composite Structures, 2023, 47(2): 297-313.
    [4] KIM T, LEE U. Vibration analysis of thin plate structures subjected to a moving force using frequency-domain spectral element method[J]. Shock and Vibration, 2018, 2018: 1908508.
    [5] GHAZVINI T, NIKKHOO A, ALLAHYARI H, et al. Dynamic response analysis of a thin rectangular plate of varying thickness to a traveling inertial load[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38(2): 403-411. doi: 10.1007/s40430-015-0409-2
    [6] MONTERRUBIO L E, ILANKO S. Proof of convergence for a set of admissible functions for the Rayleigh-Ritz analysis of beams and plates and shells of rectangular planform[J]. Computers & Structures, 2015, 147: 236-243.
    [7] SONG Q H, SHI J H, LIU Z Q. Vibration analysis of functionally graded plate with a moving mass[J]. Applied Mathematical Modelling, 2017, 46: 141-160. doi: 10.1016/j.apm.2017.01.073
    [8] SONG Q H, LIU Z Q, SHI J H, et al. Parametric study of dynamic response of sandwich plate under moving loads[J]. Thin-Walled Structures, 2018, 123: 82-99. doi: 10.1016/j.tws.2017.11.012
    [9] NGUYEN V X, LIEU Q X, LE T A, et al. A novel coupled finite element method for hydroelastic analysis of FG-CNTRC floating plates under moving loads[J]. Steel and Composite Structures, 2022, 42(2): 243-256.
    [10] KARAMANLI A, ELTAHER M A, THAI S, et al. Transient dynamics of 2D-FG porous microplates under moving loads using higher order finite element model[J]. Engineering Structures, 2023, 278: 115566. doi: 10.1016/j.engstruct.2022.115566
    [11] ESEN I. A new finite element for transverse vibration of rectangular thin plates under a moving mass[J]. Finite Elements in Analysis and Design, 2013, 66: 26-35. doi: 10.1016/j.finel.2012.11.005
    [12] MALEKZADEH P, MONAJJEMZADEH S M. Nonlinear response of functionally graded plates under moving load[J]. Thin-Walled Structures, 2015, 96: 120-129. doi: 10.1016/j.tws.2015.07.017
    [13] LIU Z H, NIU J C, JIA R H. Dynamic analysis of arbitrarily restrained stiffened plate under moving loads[J]. International Journal of Mechanical Sciences, 2021, 200: 106414. doi: 10.1016/j.ijmecsci.2021.106414
    [14] 杨建华, 张定华, 吴宝海. 考虑加工过程的复杂薄壁件加工综合误差补偿方法[J]. 航空学报, 2014, 35(11): 3174-3181. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201411028.htm

    YANG J H, ZHANG D H, WU B H. A comprehensive error compensation approach considering machining process for complex thin-wall parts machining[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 3174-3181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201411028.htm
    [15] CHO D S, KIM B H, KIM J H, et al. Forced vibration analysis of arbitrarily constrained rectangular plates and stiffened panels using the assumed mode method[J]. Thin-Walled Structures, 2015, 90: 182-190.
    [16] NGUYEN-THOI T, BUI-XUAN T, PHUNG-VAN P, et al. Static, free vibration and buckling analyses of stiffened plates by CS-FEM-DSG3 using triangular elements[J]. Computers & Structures, 2013, 125: 100-113.
    [17] SU Z, WANG L F, SUN K P, et al. Vibration characteristic and flutter analysis of elastically restrained stiffened functionally graded plates in thermal environment[J]. International Journal of Mechanical Sciences, 2019, 157-158: 872-884.
    [18] ESMAEILZADEH M, KADKHODAYAN M. Dynamic analysis of stiffened bi-directional functionally graded plates with porosities under a moving load by dynamic relaxation method with kinetic damping[J]. Aerospace Science and Technology, 2019, 93: 105333.
    [19] SU J P, HE W P, ZHOU K. Study on vibration behavior of functionally graded porous material plates immersed in liquid with general boundary conditions[J]. Thin-Walled Structures, 2023, 182: 110166.
    [20] RAD H K, SHARIATMADAR H, GHALEHNOVI M. Simplification through regression analysis on the dynamic response of plates with arbitrary boundary conditions excited by moving inertia load[J]. Applied Mathematical Modelling, 2020, 79: 594-623.
    [21] PIRMORADIAN M, TORKAN E, KARIMPOUR H. Parametric resonance analysis of rectangular plates subjected to moving inertial loads via IHB method[J]. International Journal of Mechanical Sciences, 2018, 142-143: 191-215.
    [22] DYNIEWICZ B, PISARSKI D, BAJER C I. Vibrations of a mindlin plate subjected to a pair of inertial loads moving in opposite directions[J]. Journal of Sound and Vibration, 2017, 386: 265-282.
    [23] LIU Z H, NIU J C, JIA R H, et al. An efficient numerical method for dynamic analysis of polygonal plate under moving loads[J]. Thin-Walled Structures, 2021, 167: 108183.
    [24] SORRENTINO S, CATANIA G. Dynamic analysis of rectangular plates crossed by distributed moving loads[J]. Mathematics and Mechanics of Solids, 2018, 23(9): 1291-1302.
    [25] LIU L, CORRADI R, RIPAMONTI F, et al. Wave based method for flexural vibration of thin plate with general elastically restrained edges[J]. Journal of Sound and Vibration, 2020, 483: 115468.
    [26] SONG Q H, SHI J H, LIU Z Q, et al. Dynamic analysis of rectangular thin plates of arbitrary boundary conditions under moving loads[J]. International Journal of Mechanical Sciences, 2016, 117: 16-29.
    [27] MEIROVITCH L. Analytical methods in vibrations[M]. New York: The Macmillan, 1967.
    [28] KADIVAR M H, MOHEBPOUR S R. Finite element dynamic analysis of unsymmetric composite laminated beams with shear effect and rotary inertia under the action of moving loads[J]. Finite Elements in Analysis and Design, 1998, 29(3-4): 259-273.
    [29] PAN W J, LI X P, WANG L L, et al. A normal contact stiffness fractal prediction model of dry-friction rough surface and experimental verification[J]. European Journal of Mechanics-A/Solids, 2017, 66: 94-102.
    [30] RAO S. Vibration of continuous systems[M]. John Wiley & Sons, Inc, 1969.
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  1219
  • HTML全文浏览量:  8
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-02
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回