留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属封严环数字孪生几何模型框架的开发与应用

裴昊男 张璞玉 罗明

裴昊男, 张璞玉, 罗明. 金属封严环数字孪生几何模型框架的开发与应用[J]. 机械科学与技术, 2024, 43(7): 1158-1167. doi: 10.13433/j.cnki.1003-8728.20240024
引用本文: 裴昊男, 张璞玉, 罗明. 金属封严环数字孪生几何模型框架的开发与应用[J]. 机械科学与技术, 2024, 43(7): 1158-1167. doi: 10.13433/j.cnki.1003-8728.20240024
PEI Haonan, ZHANG Puyu, LUO Ming. Development and Application of Digital Twin Geometric Model Framework for Metallic Sealing Rings[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1158-1167. doi: 10.13433/j.cnki.1003-8728.20240024
Citation: PEI Haonan, ZHANG Puyu, LUO Ming. Development and Application of Digital Twin Geometric Model Framework for Metallic Sealing Rings[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1158-1167. doi: 10.13433/j.cnki.1003-8728.20240024

金属封严环数字孪生几何模型框架的开发与应用

doi: 10.13433/j.cnki.1003-8728.20240024
基金项目: 

国家科技重大专项 2019-VII-0014-0154

详细信息
    作者简介:

    裴昊男, 博士研究生, peihn@mail.nwpu.edu.cn

    通讯作者:

    罗明, 教授, 博士生导师, 博士, luoming@nwpu.edu.cn

  • 中图分类号: TP391.9;TG806

Development and Application of Digital Twin Geometric Model Framework for Metallic Sealing Rings

  • 摘要: 金属封严环广泛应用于航空发动机密封系统,其型面成形质量对飞行器高性能、高可靠服役具有重要影响。然而,薄壁、复杂的异形截面与封闭的环形结构等导致其在几何质量检测方面存在以下问题:其一,成形结果严重依赖于破坏性抽样终检,实际产品均未经过完整质量检测;其二,成形过程无几何质量检测手段,无法及时发现成形缺陷,轮廓几何数据的缺失,使工艺优化设计困难。因此,提出一种金属封严环数字孪生几何模型框架,该框架包括:物理空间、虚拟空间、交互空间与服务,可提供在机测量平台标定、截面轮廓测量、点云数据预处理、截面几何特征计算、三维数模快速构建、三维型面动态测量与偏差计算等连续成形质量在线检测技术,建立起反映金属封严环成形过程中变化的数字孪生几何模型,从而为金属封严环成形质量的检测、分析、预测以及后续工艺优化设计所需的基础数据获取等提供支撑。在此基础上,研制了在线检测模拟试验装置与数字孪生软件,介绍了金属封严环数字孪生几何模型的应用情况。
  • 图  1  航空发动机金属封严环

    Figure  1.  Metallic sealing rings of aeroengine

    图  2  金属封严环数字孪生几何模型框架

    Figure  2.  Digital twin geometric model framework for metallic sealing rings

    图  3  金属封严环多道次滚压成形工艺

    Figure  3.  Multi-pass rolling forming process of metallic sealing rings

    图  4  W形金属封严环截面几何特征与提取方法

    Figure  4.  Section geometric features and their extraction for W-shaped metallic sealing ring

    图  5  在线检测模拟试验装置原理图

    Figure  5.  The schematic diagram of on-line inspection simulation test device

    图  6  在线检测数字孪生软件框架

    Figure  6.  The on-line inspection digital twin software framework

    图  7  多波形环模拟工作环境检测与数字化三维模型

    Figure  7.  Inspection and digital 3D modeling of multi-wave-ring under the simulation working environment

    图  8  三维型面测量与偏差计算

    Figure  8.  Measurement and deviation calculation of 3-D surface

    图  9  截面几何尺寸检测值与设计值

    Figure  9.  Inspection values and design values of section geometric dimensions

    表  1  金属封严环几何尺寸检测值与设计值的偏差

    Table  1.   The deviations between geometric dimension inspection values and design values of metallic sealing ring

    道次 截面宽度/mm 截面高度/mm 壁厚/mm 波谷圆A/mm 波谷圆B/mm 波峰圆/mm 波谷中心距/mm 波高/mm
    第一道次 -1.452 -0.085 0.000 0.232 0.380 0.142 -0.374 -0.589
    第二道次 -0.911 0.092 0.010 0.050 -0.024 0.132 -0.658 -0.084
    第三道次 -0.985 0.043 0.007 0.004 -0.007 0.101 -0.716 -0.083
    第四道次 -0.346 0.132 0.012 0.007 -0.018 -0.011 -0.232 0.112
    第五道次 -0.784 0.214 -0.008 0.002 -0.079 0.007 -0.219 0.024
    第六道次 0.117 0.123 0.016 -0.027 -0.037 0.024 0.004 -0.017
    下载: 导出CSV

    表  2  金属封严环几何尺寸公差

    Table  2.   The tolerances of metallic sealing ring geometric dimensions

    截面宽度/mm 截面高度/mm 壁厚/mm 波谷圆A/mm 波谷圆B/mm 波峰圆/mm 波谷中心距/mm 波高/mm
    ±0.2 ±0.24 ±0.025 ±0.2 ±0.2 ±0.2 ±0.20 ±0.20
    下载: 导出CSV
  • [1] 李留柱, 李智军, 李宏伟, 等. 高温合金薄壁W截面密封环滚压成形壁厚变化研究[J]. 精密成形工程, 2019, 11(5): 43-49. doi: 10.3969/j.issn.1674-6457.2019.05.006

    LI L Z, LI Z J, LI H W, et al. Wall thickness variation of a superalloy thin-walled W-section seal ring during roll forming[J]. Journal of Netshape Forming Engineering, 2019, 11(5): 43-49. (in Chinese) doi: 10.3969/j.issn.1674-6457.2019.05.006
    [2] 朱宇, 万敏. 航空发动机薄壁W形封严环动模外压成形[J]. 航空学报, 2015, 36(7): 2457-2467. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201507037.htm

    ZHU Y, WAN M. External pressure forming of thin walled W-shaped sealing rings in aircraft engines using movable dies[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7): 2457-2467. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201507037.htm
    [3] 陈昭明, 邹劲松. 智能制造领域的数字孪生技术研究可视化知识图谱分析[J]. 机械科学与技术, 2023, 42(8): 1249-1260. doi: 10.13433/j.cnki.1003-8728.20220080

    CHEN Z M, ZOU J S. Analysis of visual knowledge mapping in intelligent manufacturing via digital twin technology[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1249-1260. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20220080
    [4] 庄存波, 刘检华, 熊辉, 等. 产品数字孪生体的内涵、体系结构及其发展趋势[J]. 计算机集成制造系统, 2017, 23(4): 753-768. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201704010.htm

    ZHUANG C B, LIU J H, XIONG H, et al. Connotation, architecture and trends of product digital twin[J]. Computer Integrated Manufacturing Systems, 2017, 23(4): 753-768. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201704010.htm
    [5] 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201801001.htm

    TAO F, LIU W R, LIU J H, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201801001.htm
    [6] 张映锋, 张党, 任杉. 智能制造及其关键技术研究现状与趋势综述[J]. 机械科学与技术, 2019, 38(3): 329-338. doi: 10.13433/j.cnki.1003-8728.20180300

    ZHANG Y F, ZHANG D, REN S. Survey on current research and future trends of smart manufacturing and its key technologies[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(3): 329-338. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20180300
    [7] WANG P, LUO M. A digital twin-based big data virtual and real fusion learning reference framework supported by industrial internet towards smart manufacturing[J]. Journal of Manufacturing Systems, 2021, 58: 16-32. doi: 10.1016/j.jmsy.2020.11.012
    [8] ZHU Z X, XI X L, XU X, et al. Digital twin-driven machining process for thin-walled part manufacturing[J]. Journal of Manufacturing Systems, 2021, 59: 453-466. doi: 10.1016/j.jmsy.2021.03.015
    [9] ZHENG Y, CHEN L, LU X Y, et al. Digital twin for geometric feature online inspection system of car body-in-white[J]. International Journal of Computer Integrated Manufacturing, 2021, 34(7-8): 752-763. doi: 10.1080/0951192X.2020.1736637
    [10] STOJADINOVIC S M, ZIVANOVIC S, SLAVKOVIC N, et al. Digital measurement twin for CMM inspection based on step-NC[J]. International Journal of Computer Integrated Manufacturing, 2021, 34(12): 1327-1347. doi: 10.1080/0951192X.2021.1972460
    [11] TANG Y P, WANG Y N, TAN H R, et al. A digital twin-based intelligent robotic measurement system for freeform surface parts[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 7003013.
    [12] 王艳青, 闫月晖, 马嵩华, 等. 滚动轴承数字孪生几何模型精细建模[J]. 计算机集成制造系统, 2023, 29(6): 1882-1893. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ202306008.htm

    WANG Y Q, YAN Y H, MA S H, et al. Fine modeling method of digital twin geometric model for rolling bearing[J]. Computer Integrated Manufacturing Systems, 2023, 29(6): 1882-1893. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ202306008.htm
    [13] 陶飞, 张萌, 程江峰, 等. 数字孪生车间——一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201701001.htm

    TAO F, ZHANG M, CHENG J F, et al. Digital twin workshop: a new paradigm for future workshop[J]. Computer Integrated Manufacturing Systems, 2017, 23(1): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201701001.htm
    [14] 陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201901001.htm

    TAO F, LIU W R, ZHANG M, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201901001.htm
    [15] YANG H, ZHAN M, LIU Y L, et al. Some advanced plastic processing technologies and their numerical simulation[J]. Journal of Materials Processing Technology, 2004, 151(1-3): 63-69. doi: 10.1016/j.jmatprotec.2004.04.015
    [16] PEI H N, ZHANG P Y, DU S Z, et al. A point cloud preprocessing method for complicated thin-walled ring parts with irregular section[J]. Measurement, 2023, 214: 112807.
    [17] PEI H N, LUO M, DU S Z. Research on profile geometric feature parameters extraction of complicated thin-walled ring parts with irregular section[J]. Computer-Aided Design & Applications, 2023, 20(6): 1271-1287.
    [18] BIASOTTI S, ATTALI D, BOISSONNAT J D, et al. Skeletal structures[M]//FLORIANI L, SPAGNUOLO M. Shape Analysis and Structuring. Heidelberg: Springer, 2008: 145-183.
    [19] PEI H N, ZHOU W J, LUO M. Vibration errors compensation method based on self-feature registration for the 3-D dynamic measurement of metallic sealing ring forming surface[J]. Measurement and Control, 2024, 57(5): 500-509.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1229
  • HTML全文浏览量:  3
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-07
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回