留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑精铸变形的涡轮叶片气膜冷却效率灵敏度计算方法研究

尤鑫添 董一巍 刘松 吴超林 郭文 龚雨晗

尤鑫添, 董一巍, 刘松, 吴超林, 郭文, 龚雨晗. 考虑精铸变形的涡轮叶片气膜冷却效率灵敏度计算方法研究[J]. 机械科学与技术, 2024, 43(7): 1151-1157. doi: 10.13433/j.cnki.1003-8728.20240023
引用本文: 尤鑫添, 董一巍, 刘松, 吴超林, 郭文, 龚雨晗. 考虑精铸变形的涡轮叶片气膜冷却效率灵敏度计算方法研究[J]. 机械科学与技术, 2024, 43(7): 1151-1157. doi: 10.13433/j.cnki.1003-8728.20240023
YOU Xintian, DONG Yiwei, LIU Song, WU Chaolin, GUO Wen, GONG Yuhan. Calculation Method of Turbine Blade Cooling Efficiency Sensitivity Considering Deformation of Investment Casting[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1151-1157. doi: 10.13433/j.cnki.1003-8728.20240023
Citation: YOU Xintian, DONG Yiwei, LIU Song, WU Chaolin, GUO Wen, GONG Yuhan. Calculation Method of Turbine Blade Cooling Efficiency Sensitivity Considering Deformation of Investment Casting[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1151-1157. doi: 10.13433/j.cnki.1003-8728.20240023

考虑精铸变形的涡轮叶片气膜冷却效率灵敏度计算方法研究

doi: 10.13433/j.cnki.1003-8728.20240023
基金项目: 

国家科技重大专项 J2019-II-0022-0043

国家科技重大专项 J2019-VII-0013-0153

国家自然科学基金项目 51705440

福建省自然科学基金项目 2019J01044

航空科学基金项目 20230003068002

航空科学基金项目 20170368001

福建省中科院STS计划配套院省合作重大项目 2022T3071

详细信息
    作者简介:

    尤鑫添, 硕士研究生, 862149938@qq.com

    通讯作者:

    董一巍, 副教授, 博士生导师, 博士, yiweidong@xmu.edu.cn

  • 中图分类号: V231.1

Calculation Method of Turbine Blade Cooling Efficiency Sensitivity Considering Deformation of Investment Casting

  • 摘要: 精铸加工使得涡轮叶片几何结构与设计之间产生随机性偏差, 这一偏差对叶片气膜冷却效率造成不确定性影响。涡轮叶片外形偏差的不确定性是几何层面的小扰动问题。本文通过精铸模拟建立了涡轮叶片精铸变形模型。基于PIV与数值模拟建立了适用于流热耦合计算的Realizable k-epsilon湍流模型, 建立了考虑叶片变形的气膜冷却效率灵敏度计算方法, 计算了涡轮叶片的气膜冷却效率随吹风比变化的灵敏度。结果表明: 涡轮叶片精铸产生的变形越大, 对原有气膜冷却效率的损失越大。叶片整体平均形变0.25 mm使得整体气膜冷却效率损失约5%, 局部形变如叶尖叶片后缘处的0.70 mm可使叶尖平均气膜冷却效率损失约8%。由灵敏度分析确定的精铸后气膜冷却效率相对误差较明显, 达到了1.62%。
  • 图  1  动叶浇注系统凝固过程温度场云图

    Figure  1.  Temperature field during solidification of turbine blade pouring system

    图  2  叶片的叶盆和叶背形变量分布云图

    Figure  2.  Cloud map of deformation distribution of leaf basin and leaf back

    图  3  排沙孔中径位置

    Figure  3.  Location of the turbine blade sand discharge hole

    图  4  不同模型特征位置流体流速对比

    Figure  4.  Flow rates at characteristic locations of different models

    图  5  网格无关性验证

    Figure  5.  Grid independence verification

    图  6  不同吹风比下精铸前后叶片表面气膜冷却效率对比

    Figure  6.  Comparison of air cooling efficiency of blade surface before and after investment casting under different blowing ratios

    图  7  所选叶尖部位

    Figure  7.  The chosen turbine blade tip

    图  8  不同吹风比下精铸前后叶片叶尖表面气膜冷却效率对比

    Figure  8.  Comparison of the air cooling efficiency of blade tip surface before and after investment casting under different blowing ratios

    图  9  测量点分布示意

    Figure  9.  Distribution of measuring points of turbine blade

    图  10  精铸前气膜冷却效率灵敏度变化

    Figure  10.  Sensitivity change of gas film cooling efficiency before investment casting

    图  11  精铸后气膜冷却效率灵敏度变化

    Figure  11.  Sensitivity change of gas film cooling efficiency after investment casting

    表  1  基于灵敏度分析的气膜冷却效率偏差

    Table  1.   Efficiency deviation of gas film cooling based on sensitivity analysis

    叶片 CFD 伴随方法 偏差/%
    设计模型 0.356 17 - -
    精铸模型 0.347 77 0.342 15 1.62
    下载: 导出CSV
  • [1] 杨卫东, 张呈林, 王华明. 直升机旋翼气弹响应及桨毂载荷的参数灵敏度分析[J]. 南京航空航天大学学报, 1996, 28(6): 733-738.

    YANG W D, ZHANG C L, WANG H M. Efficient sensitivity analysis of aeroelastic response and hub loads for a helicopter rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1996, 28(6): 733-738. (in Chinese)
    [2] 张宝振, 王汉平, 徐峰, 等. VSV调节机构的仿真提速和精度补偿措施[J]. 航空学报, 2022, 43(9): 226034.

    ZHANG B Z, WANG H P, XU F, et al. Simulation speed-up and accuracy compensation measures for adjusting mechanism of variable stator vane[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 226034. (in Chinese)
    [3] 苏子献, 韩东, 崔钊. 基于灵敏度分析的直升机旋翼桨叶模型修正方法[J/OL]. 航空动力学报, 1-8. [2023-09-15]. https://doi.org/10.13224/j.cnki.jasp.20220869.

    SU Z X, HAN D, CUI Z. Helicopter rotor blade model updating method based on sensitivity analysis[J/OL]. Journal of Aerospace Power, 1-8. [2023-09-15]. https://doi.org/10.13224/j.cnki.jasp.20220869. (in Chinese)
    [4] 张敏, 杨金广, 刘艳. 流体拓扑优化方法及其在叶轮机械中的应用[J]. 推进技术, 2021, 42(11): 2401-2416, doi: 10.13675/j.cnki.tjjs.200419.

    ZHANG M, YANG J G, LIU Y. Fluid topology optimization method and its application in turbomachinery[J]. Journal of Propulsion Technology, 2021, 42(11): 2401-2416, doi: 10.13675/j.cnki.tjjs.200419.(inChinese)
    [5] 申秀丽, 张野, 龙丹, 等. 涡轮榫接结构多层次设计优化方法[J]. 航空动力学报, 2015, 30(12): 2824-2832, doi: 10.13224/j.cnki.jasp.2015.12.002.

    SHEN X L, ZHANG Y, LONG D, et al. Multi-level design and optimization of turbine joint structure[J]. Journal of Aerospace Power, 2015, 30(12): 2824-2832, doi: 10.13224/j.cnki.jasp.2015.12.002.(inChinese)
    [6] 上官荣海, 郝艳华, 黄致建. 涡轮叶片异型冠结构优化设计[J]. 航空动力学报, 2018, 33(2): 313-319, doi: 10.13224/j.cnki.jasp.2018.02.008.

    SHANGGUAN R H, HAO Y H, HUANG Z J. Structural optimization design of turbine blade with special-shroud[J]. Journal of Aerospace Power, 2018, 33(2): 313-319, doi: 10.13224/j.cnki.jasp.2018.02.008.(inChinese)
    [7] 罗佳奇, 朱亚路, 刘锋. 基于伴随方法的叶片加工偏差气动灵敏度分析[J]. 工程热物理学报, 2017, 38(3): 498-503.

    LUO J Q, ZHU Y L, LIU F. Aerodynamic sensitivity analysis for manufacturing variations of a turbine blade by an adjoint method[J]. Journal of Engineering Thermophysics, 2017, 38(3): 498-503. (in Chinese)
    [8] ZHOU L, FAN H Z, ZHANG X, et al. Investigation of effect of unsteady interaction on turbine blade film cooling[J]. Engineering Applications of Computational Fluid Mechanics, 2011, 5(4): 487-498. doi: 10.1080/19942060.2011.11015388
    [9] JESSEN W, SCHRÖDER W, KLAAS M. Evolution of jets effusing from inclined holes into crossflow[J]. International Journal of Heat and Fluid Flow, 2007, 28(6): 1312-1326. doi: 10.1016/j.ijheatfluidflow.2007.06.010
    [10] YAO Y, ZHANG J Z, WANG L P. Film cooling on a gas turbine blade suction side with converging slot-hole[J]. International Journal of Thermal Sciences, 2013, 65: 267-279. doi: 10.1016/j.ijthermalsci.2012.10.004
    [11] YAO Y, ZHANG J Z, TAN X M. Numerical study of film cooling from converging slot-hole on a gas turbine blade suction side[J]. International Communications in Heat and Mass Transfer, 2014, 52: 61-72. doi: 10.1016/j.icheatmasstransfer.2014.01.008
    [12] AL-ZURFI N, TURAN A. A numerical simulation of the effects of swirling flow on jet penetration in a rotating channel[J]. Flow, Turbulence and Combustion, 2015, 94(2): 415-438. doi: 10.1007/s10494-014-9586-9
    [13] FURLANI L, ARMELLINI A, CASARSA L. Rotational effects on the flow field inside a leading edge impingement cooling passage[J]. Experimental Thermal and Fluid Science, 2016, 76: 57-66. doi: 10.1016/j.expthermflusci.2016.03.004
    [14] BERKACHE A, DIZENE R. Numerical and experimental investigation of turbine blade film cooling[J]. Heat and Mass Transfer, 2017, 53(12): 3443-3458. doi: 10.1007/s00231-017-2062-z
    [15] LEE S, HWANG W, YEE K. Robust design optimization of a turbine blade film cooling hole affected by roughness and blockage[J]. International Journal of Thermal Sciences, 2018, 133: 216-229. doi: 10.1016/j.ijthermalsci.2018.07.012
    [16] ABDELMOHIMEN M A H, MOHIUDDIN A. Experimental investigation of film cooling from compound angle holes supplemented by secondary holes[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118678. doi: 10.1016/j.ijheatmasstransfer.2019.118678
    [17] WANG H C, TAO Z, ZHOU Z Y, et al. Experimental and numerical study of the film cooling performance of the suction side of a turbine blade under the rotating condition[J]. International Journal of Heat and Mass Transfer, 2019, 136: 436-448. doi: 10.1016/j.ijheatmasstransfer.2019.02.057
    [18] WANG H C, TAO Z, ZHOU Z Y, et al. An investigation for the turbine blade film cooling performance on the suction side tip region under rotating condition[J]. Applied Thermal Engineering, 2019, 150: 864-874. doi: 10.1016/j.applthermaleng.2018.12.102
    [19] FAWZY H, ZHENG Q, JIANG Y T, et al. Study of utilizing double lateral sub holes at different spanwise angles on blade film cooling effectiveness[J]. International Communications in Heat and Mass Transfer, 2020, 117: 104728. doi: 10.1016/j.icheatmasstransfer.2020.104728
    [20] VO D T, MAI T D, KIM B, et al. Numerical study on the influence of coolant temperature, pressure, and thermal barrier coating thickness on heat transfer in high-pressure blades[J]. International Journal of Heat and Mass Transfer, 2022, 189: 122715. doi: 10.1016/j.ijheatmasstransfer.2022.122715
    [21] 张丹, 张卫红. 基于铸件热应力及变形的人工神经网络和遗传算法优化方法[J]. 航空学报, 2006, 27(4): 697-702.

    ZHANG D, ZHANG W H. Optimization of thermal stress and deformation of the casting during solidification by neural network and genetic algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4): 697-702. (in Chinese)
    [22] 张丹, 张卫红, 朱继宏. 一种求解水平连铸中瞬态界面换热系数的新方法[J]. 特种铸造及有色合金, 2006, 26(3): 147-149.

    ZHANG D, ZHANG W H, ZHU J H. A new method for determining transient interfacial heat transfer coefficients in horizontal continuous casting[J]. Special Casting & Nonferrous Alloys, 2006, 26(3): 147-149. (in Chinese)
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  767
  • HTML全文浏览量:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-07
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回