留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

防超调增强型PI控制器研究

乐万德 初建杰 程传旭 任静 刘洲洲

乐万德, 初建杰, 程传旭, 任静, 刘洲洲. 防超调增强型PI控制器研究[J]. 机械科学与技术, 2024, 43(7): 1207-1213. doi: 10.13433/j.cnki.1003-8728.20240005
引用本文: 乐万德, 初建杰, 程传旭, 任静, 刘洲洲. 防超调增强型PI控制器研究[J]. 机械科学与技术, 2024, 43(7): 1207-1213. doi: 10.13433/j.cnki.1003-8728.20240005
YUE Wande, CHU Jianjie, CHENG Chuanxu, REN Jing, LIU Zhouzhou. Research on Anti-overshoot Enhanced PI Controller[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1207-1213. doi: 10.13433/j.cnki.1003-8728.20240005
Citation: YUE Wande, CHU Jianjie, CHENG Chuanxu, REN Jing, LIU Zhouzhou. Research on Anti-overshoot Enhanced PI Controller[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1207-1213. doi: 10.13433/j.cnki.1003-8728.20240005

防超调增强型PI控制器研究

doi: 10.13433/j.cnki.1003-8728.20240005
基金项目: 

陕西省重点研发计划 2023-YBGY-014

西安市科学技术局科技计划 21XJZZ0030

西安航空学院高等教育研究项目 2022GJ1018

详细信息
    作者简介:

    乐万德, 高级工程师, 博士, wondreyue@qq.com

  • 中图分类号: TP29

Research on Anti-overshoot Enhanced PI Controller

  • 摘要: 针对电机PI控制器参数整定过程中容易出现的转速超调问题, 提出了积分凸包概念、积分凸包分析方法。在此基础上, 设计了基于积分凸包抑制的防超调增强型PI(enhaced PI, ePI)控制器。在PI控制参数基础上, 设计新增了积分阈值参数, 该参数控制积分项的累积, 并加入到驱动电机的PWM值的计算公式中。通过可视化消除积分凸包, 快速调试出防止转速超调的包括比例、积分及积分阈值参数的ePI控制器参数。基于Arduino及proteus, 构建了仿真平台。通过实验, 对比了PI控制器与基于积分凸包抑制的ePI控制器防超调仿真结果。实验结果表明: ePI控制器对超调控制有效, 且超调率随积分阈值减小而减小。
  • 图  1  PI控制电机转速超调现象

    Figure  1.  PI control motor speed overshoot

    图  2  积分凸包与比例脉冲

    Figure  2.  Integral convex hull and proportional pulse

    图  3  防超调ePI控制器

    Figure  3.  Anti-overshoot ePI controller

    图  4  系统硬件

    Figure  4.  System hardware

    图  5  软件设计

    Figure  5.  Software design

    图  6  PI调节器积分凸包和明显超调

    Figure  6.  Integral convex hull and obvious overshoot of PI controller

    图  7  增强型ePI控制器(intThr=50)

    Figure  7.  Enhanced ePI controller (intThr=50)

    图  8  增强型ePI控制器(intThr=15)

    Figure  8.  Enhanced ePI controller (intThr=15)

    图  9  PI调节器公式实验验证

    Figure  9.  PI controller formula experimental verification

    图  10  积分阈值太小出现静差(intThr=10)

    Figure  10.  Static error due to too small integral threshold (intThr=10)

    表  1  控制器超调对比

    Table  1.   Comparison of controller overshoot

    控制器类型 实际转速/(r·min-1) 目标转速/(r·min-1) 超调率/%
    PI 415.53 400.00 3.88
    ePI(intThr=50) 405.77 400.00 1.44
    ePI(intThr=15) 400.00 400.00 0.00
    ePI(intThr=10) 379.31 400.00 -5.17
    下载: 导出CSV
  • [1] ISWANTO, MA'ARIF A, PURIYANTO R D, et al. Arduino embedded control system of DC motor using proportional integral derivative[J]. International Journal of Control and Automation, 2020, 13(4): 658-667.
    [2] ZHAO J, ZHAO Z, WANG Z, et al. Simulation and experimental research of digital valve control servo system based on CMAC-PID control method[J]. High Technology Letters, 2017, 23(3): 306-314.
    [3] 刘浩浩, 张素侠. 系留四旋翼无人机串级PID控制研究[J/OL]. 机械科学与技术, 1-7. [2023-04-04]. https://doi.org/10.13433/j.cnki.1003-8728.20230166.

    LIU H H, ZHANG S X. Research on cascade PID control of tethered quadrotor UAV[J/OL]. Mechanical Science and Technology for Aerospace Engineering, 1-7. [2023-04-04]. https://doi.org/10.13433/j.cnki.1003-8728.20230166. (in Chinese)
    [4] 李璀璀, 易文俊, 管军, 等. 基于遗传算法的电动舵机系统模糊PID控制[J]. 兵器装备工程学报, 2021, 42(3): 162-167. https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI202103030.htm

    LI C C, YI W J, GUAN J, et al. Fuzzy PID control of electromechanical actuator system based on genetic algorithm[J]. Journal of Ordnance Equipment Engineering, 2021, 42(3): 162-167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI202103030.htm
    [5] 周克良, 张自建, 邓飞翔. 基于LIPO算法的水轮机调速系统PID参数优化设计[J]. 传感器与微系统, 2022, 41(5): 95-98. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ202205024.htm

    ZHOU K L, ZHANG Z J, DENG F X. PID parameters optimial design of hydraulic turbine speed governing system based on LIPO algorithm[J]. Transducer and Microsystem Technologies, 2022, 41(5): 95-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ202205024.htm
    [6] GANI M, ISLAM S, ULLAH M A. Optimal PID tuning for controlling the temperature of electric furnace by genetic algorithm[J]. SN Applied Sciences, 2019, 1(8): 880. doi: 10.1007/s42452-019-0929-y
    [7] JIA L, ZHAO X Q. An improved particle swarm optimization (PSO) optimized integral separation PID and its application on central position control system[J]. IEEE Sensors Journal, 2019, 19(16): 7064-7071. doi: 10.1109/JSEN.2019.2912849
    [8] 马晓阳, 米珂, 杜巍, 等. 基于新型积分分离PID控制算法的无刷直流电机控制系统[J]. 电机与控制应用, 2020, 47(4): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXXD202004006.htm

    MA X Y, MI K, DU W, et al. Brushless DC motor control system based on new integral separation PID control algorithm[J]. Electric Machines & Control Application, 2020, 47(4): 30-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZXXD202004006.htm
    [9] 王磊. 基于抗积分饱和PID算法的地暖控制方法研究[J]. 电子设计工程, 2017, 25(4): 181-184. https://www.cnki.com.cn/Article/CJFDTOTAL-GWDZ201704045.htm

    WANG L. Research of controlling radiant floor heating based on PID algorithm of anti-integral saturation[J]. Electronic Design Engineering, 2017, 25(4): 181-184. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWDZ201704045.htm
    [10] 李杨, 李回滨, 李仲, 等. 单兵助力外骨骼系统控制方案遗传算法仿真[J]. 兵器装备工程学报, 2019, 40(6): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201906027.htm

    LI Y, LI H B, LI Z, et al. Genetic algorithm simulation of the control scheme of single soldier extremity exoskeleton[J]. Journal of Ordnance Equipment Engineering, 2019, 40(6): 129-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201906027.htm
    [11] 郑光廷, 王琦, 陈龙胜, 等. 基于遗传算法整定PID的倾转翼飞机过渡段定高控制[J]. 航空兵器, 2020, 27(6): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ202006016.htm

    ZHENG G T, WANG Q, CHEN L S, et al. Height control for transition flight of tilting wing aircraft based on genetic algorithm tuning PID[J]. Aero Weaponry, 2020, 27(6): 85-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ202006016.htm
    [12] KHERKHAR A, CHIBA Y, TLEMANI A, et al. Thermal investigation of a thermoelectric cooler based on arduino and PID control approach[J]. Case Studies in Thermal Engineering, 2022, 36: 102249. doi: 10.1016/j.csite.2022.102249
    [13] WINTERS R. Arduino PID temperature control[J]. Nuts & Volts, 2017, 38(11): 30-35.
    [14] DAOUD A. An arduino-based low-cost hardware for temperature control[J]. WSEAS Transactions on Systems, 2021, 20: 54-66. doi: 10.37394/23202.2021.20.8
    [15] MIRTABA M, JEDDI M, NIKOOFARD A, et al. Design and implementation of a low-complexity flight controller for a quadrotor UAV[J]. International Journal of Dynamics and Control, 2023, 11(2): 689-700. doi: 10.1007/s40435-022-01016-1
    [16] 李平舟, 武阳. 基于微控制器的M/T法电机测速方法研究[J]. 电子科技, 2017, 30(5): 76-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKK201705022.htm

    LI P Z, WU Y. Research on M/T velocity measurement based on microcontrollers[J]. Electronic Science and Technology, 2017, 30(5): 76-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKK201705022.htm
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  4
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-16
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回