留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空齿轮薄辐板车削加工变形预测及切削参数优化研究

宦海祥 王孟雄 张可

宦海祥, 王孟雄, 张可. 航空齿轮薄辐板车削加工变形预测及切削参数优化研究[J]. 机械科学与技术, 2024, 43(1): 103-109. doi: 10.13433/j.cnki.1003-8728.20230389
引用本文: 宦海祥, 王孟雄, 张可. 航空齿轮薄辐板车削加工变形预测及切削参数优化研究[J]. 机械科学与技术, 2024, 43(1): 103-109. doi: 10.13433/j.cnki.1003-8728.20230389
HUAN Haixiang, WANG Mengxiong, ZHANG Ke. Study on Deformation Prediction and Cutting Parameters Optimization for Turning of Thin-walled Gear Spoke in Aerospace[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 103-109. doi: 10.13433/j.cnki.1003-8728.20230389
Citation: HUAN Haixiang, WANG Mengxiong, ZHANG Ke. Study on Deformation Prediction and Cutting Parameters Optimization for Turning of Thin-walled Gear Spoke in Aerospace[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 103-109. doi: 10.13433/j.cnki.1003-8728.20230389

航空齿轮薄辐板车削加工变形预测及切削参数优化研究

doi: 10.13433/j.cnki.1003-8728.20230389
基金项目: 

国家级重点实验室开放课题 4HTL-O-20G04

详细信息
    作者简介:

    宦海祥, 副教授, 硕士生导师, 博士, hhxjs@126.com

  • 中图分类号: TG506.6

Study on Deformation Prediction and Cutting Parameters Optimization for Turning of Thin-walled Gear Spoke in Aerospace

  • 摘要: 为了满足直升机传动系统轻量化的需求,作为直升机关键零部件的传动齿轮具有薄壁的显著特征,在切削加工中容易出现变形严重和尺寸精度难以保证的问题。本文以高强度中合金渗碳钢齿轮薄辐板为研究对象,基于ABAQUS有限元分析软件,开展了切削加工仿真研究,通过建立三维动态切削仿真模型,分析了加工过程中工件所受的切削力与切削参数之间的关系;并运用静态仿真分析了切削力和夹紧力叠加对薄辐板加工变形的影响,对仿真结果进行了极差分析。最后,通过开展试验对仿真结果进行了验证。结果表明: 齿轮薄辐板加工变形量静力学分析显示齿轮辐板轴向变形量最大,径向变形在轮毂处最大;极差分析发现,切削速度为150 m/min、进给量为0.06 mm/r、切削深度为1.8 mm为最优切削参数,最大变形量的预测误差小于10%。
  • 图  1  齿轮薄辐板加工简图

    Figure  1.  Gear thin spoke plate machining

    图  2  端面切槽刀杆参数

    Figure  2.  Parameters of end grooving toolholder

    图  3  轴向进给加工方式原理图

    Figure  3.  Schematic diagram of axial feed machining method

    图  4  三维仿真模型网格划分示意图

    Figure  4.  Schematic diagram of meshing of the 3D simulation model

    图  5  切削过程应力云图

    Figure  5.  Stress cloud map of cutting process

    图  6  切削力变化曲线

    Figure  6.  Cutting force variation curve

    图  7  车削加工过程中辐板位移云图

    Figure  7.  Spoke displacement cloud map during turning process

    图  8  加工流程及测量方式

    Figure  8.  Machining procedures and measurement method

    图  9  变形量U与切削参数之间的响应关系

    Figure  9.  Response relationship between deformation U and cutting parameters

    图  10  三坐标测量仪测量图U

    Figure  10.  Coordinate Measuring Machine Measurement Diagram U

    表  1  18Cr2Ni4WA的物理、力学、热学参数[20]

    Table  1.   Physical, mechanical and thermal parameters of 18Cr2Ni4WA[20]

    参数 数值
    密度/(kg·m-3) 7 910
    杨氏模量/GPa 202
    泊松比 0.27
    熔点/℃ 1 800
    热传导率/(W·℃-1) 44
    热膨胀系数/℃-1 1.24×10-5
    比热/[J·(kg·℃)-1] 460
    非弹性热系数 0.9
    下载: 导出CSV

    表  2  切削仿真L16(43)正交实验表

    Table  2.   Table of orthogonal experiments for cutting simulation L16(43)

    水平 切削速度vc/(m·min-1) 进给量f/(mm·r-1) 切削深度w/mm
    1 90 0.06 1.8
    2 110 0.08 2.0
    3 130 0.10 2.2
    4 150 0.12 2.4
    下载: 导出CSV

    表  3  切削力与变形量仿真实验结果

    Table  3.   Cutting force and deformation simulation results

    试验 切削速度水平 进给量水平 切削深度水平 Fc/N Ff/N U/mm
    1 1 1 1 315.29 283.94 0.084
    2 1 2 2 471.39 356.58 0.125
    3 1 3 3 578.32 391.46 0.171
    4 1 4 4 660.81 428.38 0.241
    5 2 1 2 390.06 348.56 0.102
    6 2 2 1 402.92 398.23 0.099
    7 2 3 4 603.81 460.19 0.206
    8 2 4 3 616.08 465.99 0.202
    9 3 1 3 409.66 221.33 0.122
    10 3 2 4 515.51 297.93 0.171
    11 3 3 1 469.12 288.63 0.112
    12 3 4 2 576.49 321.33 0.160
    13 4 1 4 439.99 298.54 0.137
    14 4 2 3 466.80 344.14 0.144
    15 4 3 2 518.64 361.74 0.137
    16 4 4 1 508.78 373.14 0.130
    下载: 导出CSV

    表  4  辐板变形量U极差分析表

    Table  4.   U-pole analysis of spoke plate deformations

    参数 切削速度vc/(m·min-1) 进给量f/(mm·r-1) 切削深度w/mm
    K1 0.621 0.445 0.425
    K2 0.609 0.539 0.524
    K3 0.565 0.626 0.639
    K4 0.548 0.733 0.755
    k1 0.155 3 0.111 3 0.106 3
    k2 0.152 3 0.134 8 0.131 0
    k3 0.141 3 0.156 5 0.159 8
    k4 0.137 0 0.183 4 0.188 8
    R 0.018 3 0.072 1 0.082 5
    下载: 导出CSV
  • [1] 李琳, 解丽静, 王西彬, 等. 金属切削加工中难加工材料2Cr13的本构模型[J]. 中国机械工程, 2009, 20(20): 2466-2469. doi: 10.3321/j.issn:1004-132X.2009.20.017

    LI L, XIE L J, WANG X B, et al. Constitutive model of 2Cr13 for finite element analysis of chip formation process[J]. China Mechanical Engineering, 2009, 20(20): 2466-2469. (in Chinese) doi: 10.3321/j.issn:1004-132X.2009.20.017
    [2] 薛祥友, 辛浩, 孙捷夫, 等. 航空铝合金薄壁件加工变形的分析与工艺方案设计[J]. 工具技术, 2023, 57(7): 125-128.

    XUE X Y, XIN H, SUN J F, et al. Analysis of machining deformation and process scheme design of aviation aluminum alloy thin wall parts[J]. Tool Engineering, 2023, 57(7): 125-128. (in Chinese)
    [3] 王民, 刘宇男, 孙国智, 等. 初始残余应力和切削残余应力对薄壁件加工变形的影响[J]. 北京工业大学学报, 2017, 43(8): 1141-1147.

    WANG M, LIU Y N, SUN G Z, et al. Influence of initial residual stress and cutting stress on machining deformation of thin-walled parts[J]. Journal of Beijing University of Technology, 2017, 43(8): 1141-1147. (in Chinese)
    [4] MASOUDI S, AMINI S, SAEIDI E, et al. Effect of machining- induced residual stress on the distortion of thin-walled parts[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(1-4): 597-608. doi: 10.1007/s00170-014-6281-x
    [5] KONG X N, TANG J Y, HU Z H, et al. Dynamic modeling and vibration analysis of spur gear system considering thin-walled gear and hollow shaft[J]. Mechanism and Machine Theory, 2023, 181: 105197. doi: 10.1016/j.mechmachtheory.2022.105197
    [6] 王大勇. 航空薄辐板齿轮固有特性及稳态响应分析[J]. 机械传动, 2016, 40(5): 145-147.

    WANG D Y. Inherent characteristic and steady response analysis of aviation gear with thin-spoke[J]. Journal of Mechanical Transmission, 2016, 40(5): 145-147. (in Chinese)
    [7] 廖凯, 张萧笛, 车兴飞, 等. 铝合金薄壁件加工变形的力学模型构建与分析[J]. 哈尔滨工业大学学报, 2018, 50(5): 166-172.

    LIAO K, ZHANG X D, CHE X F, et al. Construction and analysis of mechanic model of deformation for Al alloy thin-walled component[J]. Journal of Harbin Institute of Technology, 2018, 50(5): 166-172. (in Chinese)
    [8] LI B H, GAO H J, DENG H B, et al. A machining deformation control method of thin-walled part based on enhancing the equivalent bending stiffness[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(9): 2775-2790.
    [9] CHEN W F, XUE J B, TANG D B, et al. Deformation prediction and error compensation in multilayer milling processes for thin-walled parts[J]. International Journal of Machine Tools and Manufacture, 2009, 49(11): 859-864. doi: 10.1016/j.ijmachtools.2009.05.006
    [10] 李承然, 唐进元. AISI9310钢薄辐板齿轮热处理变形与残余应力数值模拟及验证[J]. 材料热处理学报, 2022, 43(3): 151-159.

    LI C R, TANG J Y. Numerical simulation and verification of residual stress and distortion of AISI9310 steel thin web gear after heat treatment[J]. Transactions of Materials and Heat Treatment, 2022, 43(3): 151-159. (in Chinese)
    [11] 丛靖梅, 莫蓉, 吴宝海, 等. 薄壁件残余应力变形仿真预测与切削参数优化[J]. 机械科学与技术, 2019, 38(2): 205-210. doi: 10.13433/j.cnki.1003-8728.20180322

    CONG J M, MO R, WU B H, et al. Prediction of deformation induced by residual stress in milling of thin-walled part and optimization of cutting parameters[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(2): 205-210. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20180322
    [12] 岳彩旭, 张俊涛, 刘献礼, 等. 薄壁件铣削过程加工变形研究进展[J]. 航空学报, 2022, 43(4): 525164.

    YUE C X, ZHANG J T, LIU X L, et al. Research progress on machining deformation of thin-walled parts in milling process[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525164. (in Chinese)
    [13] 陈伦旺. 闭式叶环插铣切削力建模及工艺优化研究[D]. 武汉: 华中科技大学, 2022.

    CHEN L W. Research on cutting force modeling and process optimization for plunge milling of closed blade rings[D]. Wuhan: Huazhong University of Science and Technology, 2022. (in Chinese)
    [14] 付中涛, 杨文玉, 张彦辉, 等. 基于切削力预测模型的复杂曲面铣削进给速度优化[J]. 中国科学: 技术科学, 2016, 46(7): 722-730.

    FU Z T, YANG W Y, ZHANG Y H, et al. Feedrate optimization of complex surface milling based on predictive model of cutting force[J]. Scientia Sinica Technologica, 2016, 46(7): 722-730. (in Chinese)
    [15] 刘学杰. 薄壁零件加工的切削力模型分析与试验研究[D]. 南京: 南京航空航天大学, 2008.

    LIU X J. Study on cutting force model and experiment of thin-walled component[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008. (in Chinese)
    [16] 王斌, 范明星, 闫晨宵, 等. 曲线齿锥齿轮加工中的应力及形变分析[J]. 机械科学与技术, 2022, 41(7): 1070-1075. doi: 10.13433/j.cnki.1003-8728.20200634

    WANG B, FAN M X, YAN C X, et al. Analysis of stress and deformation in machining of split spiral bevel gear[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(7): 1070-1075. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20200634
    [17] 韩立彰, 葛广言, 杜正春, 等. 汽车变速箱阀体加工变形的来源分析及补偿[J]. 机械设计与研究, 2021, 37(2): 78-82.

    HAN L Z, GE G Y, DU Z C, et al. Source analysis and compensation of machining deformation of automobile gearbox valve body[J]. Machine Design & Research, 2021, 37(2): 78-82. (in Chinese)
    [18] WANG B, YAN C X, FENG P Y, et al. Prediction of machining deformation and reasonable design of gear blank for split straight bevel gear[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(5): 2863-2875.
    [19] 汤万昌. 我国航空发动机齿轮材料的现状[J]. 航空材料学报, 2003, 23(S1): 283.

    TANG W C. Current status of materials for aero-engine gears in China[J]. Journal of Aeronautical Materials, 2003, 23(S1): 283. (in Chinese)
    [20] LI J L, SUN L Y. Experimental and numerical investiga- tions of crack behavior and life prediction of 18Cr2Ni4WA steel subjected to repeated impact loading[J]. Engineering Failure Analysis, 2016, 65: 11-25.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  39
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-27
  • 刊出日期:  2024-01-25

目录

    /

    返回文章
    返回