留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向连杆模具的混联机器人柔性抛光系统开发

王超 肖聚亮 郑乾健 刘海涛 黄田

王超,肖聚亮,郑乾健, 等. 面向连杆模具的混联机器人柔性抛光系统开发[J]. 机械科学与技术,2023,42(12):2030-2039 doi: 10.13433/j.cnki.1003-8728.20230331
引用本文: 王超,肖聚亮,郑乾健, 等. 面向连杆模具的混联机器人柔性抛光系统开发[J]. 机械科学与技术,2023,42(12):2030-2039 doi: 10.13433/j.cnki.1003-8728.20230331
WANG Chao, XIAO Juliang, ZHENG Qianjian, LIU Haitao, HUANG Tian. Development of a Alexible Hybrid Robot Polishing System for Connecting Rod Molds[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2030-2039. doi: 10.13433/j.cnki.1003-8728.20230331
Citation: WANG Chao, XIAO Juliang, ZHENG Qianjian, LIU Haitao, HUANG Tian. Development of a Alexible Hybrid Robot Polishing System for Connecting Rod Molds[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2030-2039. doi: 10.13433/j.cnki.1003-8728.20230331

面向连杆模具的混联机器人柔性抛光系统开发

doi: 10.13433/j.cnki.1003-8728.20230331
基金项目: 国家重点研发计划变革性项目(2019YFA0709004)
详细信息
    作者简介:

    王超(1985−),博士研究生,研究方向为模具抛光、机器人技术,wangchao4585@163.com

    通讯作者:

    肖聚亮,教授,博士生导师,tjxjl@tju.edu.cn

  • 中图分类号: TP242.2

Development of a Alexible Hybrid Robot Polishing System for Connecting Rod Molds

  • 摘要: 为了解决连杆模具抛光过程中人工抛光时间长、劳动强度大等问题,建立了一套混联机器人柔性抛光系统。在该系统上对材料去除模型进行了研究,建立了考虑抛光工具磨损的材料去除模型,能够良好预测一定抛光参数下的材料去除量;在此基础上,对模具型腔表面自动分片,并使用UG和示教相结合的方法生成加工轨迹;根据模具抛光力的控制需要,建立了一套气动控制系统,使用自主设计的浮动恒力抛光主轴结合PID控制算法实现了恒力抛光。最后在该柔性抛光系统上进行了汽车连杆模具抛光实验,实验结果表明了该柔性抛光系统能够较好地完成连杆模具抛光任务,得到较好的抛光效果。
  • 图  1  机器人抛光系统整体结构

    Figure  1.  Overall structure of a robotic polishing system

    图  2  机器人抛光系统工艺流程图

    Figure  2.  Procedural of a robotic flow chart of polishing system

    图  3  材料去除深度计算原理示意图

    Figure  3.  Schematic diagram of material removal depth calculation principles

    图  4  材料去除回归建模流程图

    Figure  4.  Flow chart of material removal regression modeling

    图  5  Preston系数在不同工况下随时间的变化曲线

    Figure  5.  The variation curve of Preston coefficient over time under different working conditions

    图  6  一定工况下的材料去除深度预测图

    Figure  6.  Prediction of material removal depth under certain working conditions

    图  7  连杆模具三维图

    Figure  7.  Three-dimensional diagram of a connecting rod mold

    图  8  复杂型腔轨迹生成流程图

    Figure  8.  Flow chart of complex cavity trajectory generation

    图  9  浮动主轴三维剖面图

    Figure  9.  3D profile view of a floating spindle

    图  10  气动系统控制流程图

    Figure  10.  Pneumatic system control flow chart

    图  11  压力控制效果曲线图

    Figure  11.  Pressure control effect curves

    图  12  连杆模具抛光实验

    Figure  12.  Experiment on polishing with a connecting rod mold

    图  13  抛光系统操作界面

    Figure  13.  Polishing system's operation interface

    图  14  模具抛光效果展示

    Figure  14.  Display of mold polishing effect

    图  15  模具圆形平面区域轨迹规划

    Figure  15.  Trajectory planning of mold circular plane area

    图  16  优化后抛光参数变化图

    Figure  16.  Change of polishing parameters after optimization

    图  17  某段轨迹采样所得的材料去除深度

    Figure  17.  Material removal depth obtained from the sampling of a certain trajectory

    图  18  实测表面粗糙度

    Figure  18.  Measured surface roughness

    表  1  PID控制参数值及其仿真动静态指标

    Table  1.   PID control parameter values and simulated dynamic and static indicators

    P I D 上升时间/s 超调量/ % 稳态误差/N
    2.7 30 0.3 0.059 0.052 0.021
    下载: 导出CSV

    表  2  相关抛光工艺参数设置

    Table  2.   Related polishing process parameter settings

    项目设置
    抛光头类型20 mm直径抛光盘、10 mm直径圆柱形砂纸棒
    抛光头材质砂纸
    砂纸粒度320目
    主轴转速2500 r$/$min
    抛光压力20 ~ 50 N
    进给速度1 ~ 4 mm$/$s
    下载: 导出CSV
  • [1] HUSMANN S, STEMMLER S, HÄHNEL S, et al. Model predictive force control in grinding based on a lightweight robot[J]. IFAC-PapersOnLine, 2019, 52(13): 1779-1784. doi: 10.1016/j.ifacol.2019.11.459
    [2] HÄHNEL S, PINI F, LEALI F, et al. Reconfigurable robotic solution for effective finishing of complex surfaces[C]//Proceedings of the 23rd International Conference on Emerging Technologies and Factory Automation. Turin: IEEE, 2018: 1285-1290.
    [3] EL KHALICK MOHAMMAD A, WANG D W. Electrochemical mechanical polishing technology: recent developments and future research and industrial needs[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(5): 1909-1924.
    [4] LUO X C, CHENG K, WEBB D, et al. Design of ultraprecision machine tools with applications to manufacture of miniature and micro components[J]. Journal of Materials Processing Technology, 2005, 167(2-3): 515-528. doi: 10.1016/j.jmatprotec.2005.05.050
    [5] 梁迎春, 陈国达, 孙雅洲, 等. 超精密机床研究现状与展望[J]. 哈尔滨工业大学学报, 2014, 46(5): 28-39.

    LIANG Y C, CHEN G D, SUN Y Z, et al. Research status and outlook of ultra-precision machine tool[J]. Journal of Harbin Institute of Technology, 2014, 46(5): 28-39. (in Chinese)
    [6] ZHANG X J, ZHANG Z Y, ZHENG L G, et al. Manufacturing and testing SiC aspherical mirrors in space telescopes[C]//Proceedings of SPIE 6024, ICO20: Optical Devices and Instruments. Changchun: SPIE, 2005: 602402.
    [7] 夏毅敏, 杨添任, 张刚强, 等. Nanosys-1000机床静压止推轴承流场分布规律及承载特性[J]. 光学 精密工程, 2013, 21(1): 144-150. doi: 10.3788/OPE.20132101.0144

    XIA Y M, YANG T R, ZHANG G Q, et al. Flow field distribution and bearing characteristics of hydrostatic thrust bearing in Nanosys-1000 machine[J]. Optics and Precision Engineering, 2013, 21(1): 144-150. (in Chinese) doi: 10.3788/OPE.20132101.0144
    [8] YAO Y S, MA Z, DING J T, et al. Heavy-calibre off-axis aspheric surface polishing by industrial robot[C]//Proceedings of SPIE 10838, 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies. Chengdu: SPIE, 2019: 1083803.
    [9] KHARIDEGE A, DU T T, ZHANG Y J. A practical approach for automated polishing system of free-form surface path generation based on industrial arm robot[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(9-12): 3921-3934. doi: 10.1007/s00170-017-0726-y
    [10] LI J, GUAN Y S, CHEN H W, et al. A high-bandwidth end-effector with active force control for robotic polishing[J]. IEEE Access, 2020, 8: 169122-169135. doi: 10.1109/ACCESS.2020.3022930
    [11] LI J, ZHANG T, LIU X N, et al. A survey of robotic polishing[C]//Proceedings of 2018 IEEE International Conference on Robotics and Biomimetics. Kuala Lumpur: IEEE, 2019: 2125-2132.
    [12] WU J, GAO Y, ZHANG B B, et al. Workspace and dynamic Performance evaluation of the parallel manipulators in a spray-painting equipment[J]. Robotics and Computer-Integrated Manufacturing, 2017, 44: 199-207. doi: 10.1016/j.rcim.2016.09.002
    [13] WU J, YE H, YU G, et al. A novel dynamic evaluation method and its application to a 4-DOF parallel manipulator[J]. Mechanism and Machine Theory, 2022, 168: 104627. doi: 10.1016/j.mechmachtheory.2021.104627
    [14] LÓPEZ-CUSTODIO P C, FU R, DAI J S, et al. Compliance model of Exechon manipulators with an offset wrist[J]. Mechanism and Machine Theory, 2022, 167: 104558. doi: 10.1016/j.mechmachtheory.2021.104558
    [15] DONG C L, LIU H T, HUANG T, et al. A screw theory-based semi-analytical approach for elastodynamics of the tricept robot[J]. Journal of Mechanisms and Robotics, 2019, 11(3): 031005. doi: 10.1115/1.4043047
    [16] DONG C L, LIU H T, YUE W, et al. Stiffness modeling and analysis of a novel 5-DOF hybrid robot[J]. Mechanism and Machine Theory, 2018, 125: 80-93. doi: 10.1016/j.mechmachtheory.2017.12.009
    [17] ZHENG Q J, XIAO J L, WANG C, et al. A robotic polishing parameter optimization method considering time-varying wear[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(9-10): 6723-6738. doi: 10.1007/s00170-022-09788-8
    [18] 樊成, 赵继, 张雷, 等. 移动抛光自由曲面材料去除的理论建模与试验研究[J]. 机械工程学报, 2014, 50(5): 173-181. doi: 10.3901/JME.2014.05.173

    FAN C, ZHAO J, ZHANG L, et al. Modeling and experimental study on the material removal in the velocity-dwell-mode polishing process[J]. Journal of Mechanical Engineering, 2014, 50(5): 173-181. (in Chinese) doi: 10.3901/JME.2014.05.173
    [19] 于淼, 刘新星. 机器人抛磨自由曲面的分片路径规划研究[J]. 长春大学学报, 2019, 29(4): 6-9.

    YU M, LIU X X. Research on paths of fragmentation planning for robot polishing free-form surface[J]. Journal of Changchun University, 2019, 29(4): 6-9. (in Chinese)
    [20] XIAO J L, WANG Y P, Liu S J, et al. Grinding trajectory generation of hybrid robot based on cartesian direct teaching technology[J]. Industrial Robot, 2021, 48(3): 341-351. doi: 10.1108/IR-09-2020-0194
    [21] 肖聚亮, 郑乾健, 王超, 等. 一种浮动恒力磨抛装置: 202210622258. X[P]. 2022-08-26.

    XIAO J L, ZHENG Q J, WANG C, et al. A floating constant force grinding and polishing device: 202210622258. X[P]. 2022-08-26. (in Chinese)
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  29
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-27
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回