留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

薄壁结构件毛坯去应力分析与铣削加工变形有限元模拟研究

徐飞飞 刘其广 吕杰 金鑫

徐飞飞, 刘其广, 吕杰, 金鑫. 薄壁结构件毛坯去应力分析与铣削加工变形有限元模拟研究[J]. 机械科学与技术, 2024, 43(1): 96-102. doi: 10.13433/j.cnki.1003-8728.20230287
引用本文: 徐飞飞, 刘其广, 吕杰, 金鑫. 薄壁结构件毛坯去应力分析与铣削加工变形有限元模拟研究[J]. 机械科学与技术, 2024, 43(1): 96-102. doi: 10.13433/j.cnki.1003-8728.20230287
XU Feifei, LIU Qiguang, LYU Jie, JIN Xin. Study on Stress Relief Analysis and Deformation of Thin-walled Structural Parts in Milling by Using Finite Element Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 96-102. doi: 10.13433/j.cnki.1003-8728.20230287
Citation: XU Feifei, LIU Qiguang, LYU Jie, JIN Xin. Study on Stress Relief Analysis and Deformation of Thin-walled Structural Parts in Milling by Using Finite Element Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 96-102. doi: 10.13433/j.cnki.1003-8728.20230287

薄壁结构件毛坯去应力分析与铣削加工变形有限元模拟研究

doi: 10.13433/j.cnki.1003-8728.20230287
详细信息
    作者简介:

    徐飞飞, 工程师, xufeifei0212@163.com

  • 中图分类号: TG156

Study on Stress Relief Analysis and Deformation of Thin-walled Structural Parts in Milling by Using Finite Element Method

  • 摘要: 薄壁件在航空航天领域应用广泛,其制造精度直接决定了装备的服役性能。然而,由于热处理的影响,导致薄壁件在加工之前存在残余应力。如果控制不当极易导致零件超差。因此,本文以7075铝合金板材为研究对象,分析了残余应力在板料淬火与预拉伸时产生的原理。进一步,采用有限元方法作为工具,对7075毛坯在淬火和预拉伸法过程中残余应力的产生进行了模拟。通过模拟发现,当毛坯件被拉伸约3%,塑性应变量约为2.4 %时,淬火残余应力消除可达91.2 %。在降低残余应力的基础上,本文建立了薄壁结构件铣削加工仿真模型,模拟了多因素耦合作用下的铣削加工变形,并通过铣削实验验证了仿真结果的正确性。
  • 图  1  整体毛坯件尺寸

    Figure  1.  Monolithic blank dimension

    图  2  淬火后沿路径Z向的残余应力分布

    Figure  2.  Quenched residual stress distribution on path Z direction

    图  3  拉伸对淬火铝合金残余应力的影响

    Figure  3.  Effect of pre-stretching on quenched residual stress

    图  4  薄壁结构件尺寸

    Figure  4.  Thin-walled structural part dimension

    图  5  薄壁结构件有限元模型

    Figure  5.  FEM of thin-walled structural part

    图  6  不同铣刀状态下加载单元的受力模式

    Figure  6.  The forced pattern of load element under different milling states

    图  7  铣削加工模拟后的工件整体变形轮廓图

    Figure  7.  The contour distribution of part′s integral deformationafter milling process simulation

    图  8  铣削加工模拟后的工件整体变形分布图

    Figure  8.  The distribution of part′s integral deformation after milling process simulation

    图  9  薄壁结构件加工

    Figure  9.  Machining of thin-walled structural part

    图  10  加工后的工件

    Figure  10.  The machined part

    图  11  工件加工变形实验与有限元模拟对比图

    Figure  11.  Comparison of FEA simulation and workpiece machining distortion experiment

    表  1  7075铝合金的力学性能和热物理性能[15]

    Table  1.   Mechanical and thermal properties of Al7075[15]

    温度/℃ 20 100 200 300 400 500
    弹性模量/GPa 71 65.19 56.26 37.98 31.5 25
    塑性模量/MPa 250 210 150 50 15 10
    屈服应力/MPa 455.9 389.1 275.7 47.1 35.5 16.3
    热传导系数/[W·(m·℃)-1] 115 120 140 150 160 170
    比热/[J·(Kg·℃)-1] 860 900 970 1020 1120 1320
    对流换热系数/[W·(m2·℃)-1] 2 660 5 000 12 880 10 000 3 000 350
    平均热膨胀系数/(10-6·℃-1) 21.6 23.4 24.3 25.2 30.7 31.4
    (0~20 ℃) (0~100 ℃) (0~200 ℃) (0~30 ℃) (0~400 ℃) (0~500 ℃)
    下载: 导出CSV
  • [1] 王长清, 张毅飞, 郑勇, 等. 钛合金薄壁件切削力与残余应力研究[J]. 重庆理工大学学报(自然科学), 2022, 36(3): 95-104.

    WANG C Q, ZHANG Y F, ZHENG Y, et al. Study on cutting force and residual stress of titanium alloy thin wall part[J]. Journal of Chongqing University of Technology (Natural Science), 2022, 36(3): 95-104. (in Chinese)
    [2] 王志学, 刘献礼, 李茂月, 等. 考虑力致变形影响的薄壁件铣削多点接触稳定性预测[J]. 机械工程学报, 2022, 58(17): 309-320.

    WANG Z X, LIU X L, LI M Y, et al. Multi-point contact stability prediction considering force-induced deformation effect in milling thin-Walled Parts[J]. Journal of Mechanical Engineering, 2022, 58(17): 309-320. (in Chinese)
    [3] 李曦, 袁军堂, 汪振华, 等. 基于Rayleigh-Ritz法的钛合金薄壁件非均匀余量加工变形控制研究[J]. 中国机械工程, 2020, 31(11): 1378-1385.

    LI X, YUAN J T, WANG Z H, et al. Study on deformation control of thin-walled Titanium alloy parts in non-uniform allowance machining based on Rayleigh-Ritz method[J]. China Mechanical Engineering, 2020, 31(11): 1378-1385. (in Chinese)
    [4] SEDEH M R N, GHAEI A. The effects of machining residual stresses on springback in deformation machining bending mode[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(3): 1087-1098.
    [5] WANG Z H, WANG S B, WANG S L, et al. A novel surface residual stress monitoring method based on the power consumption of machine tool: A case study in 5-axis machining[J]. Journal of Manufacturing Processes, 2023, 86: 221-236. doi: 10.1016/j.jmapro.2022.12.057
    [6] 姜建堂, 范丁歌, 赵熊爔, 等. 大型铝合金构件制造全过程残余应力预测与控制[J]. 中国材料进展, 2022, 41(11): 899-908.

    JIANG J T, FAN D G, ZHAO X X, et al. Whole process prediction-control of residual stress during the manufacturing of large aluminum alloy components[J]. Materials China, 2022, 41(11): 899-908. (in Chinese)
    [7] WANG Z Y, ZHOU J H, REN J X, et al. Predicting surface residual stress for multi-axis milling of Ti-6Al-4V titanium alloy in combined simulation and experiments[J]. Materials, 2022, 15(18): 6471. doi: 10.3390/ma15186471
    [8] 刘瑶琼, 龚海, 孙燕杰. 7050铝合金厚板弹性模量分布差异及其对预拉伸后残余应力的影响[J]. 热加工工艺, 2019, 48(24): 25-29.

    LIU Y Q, GONG H, SUN Y J. Distribution difference of elastic modulus of 7050 aluminum alloy thick plate and its influence on residual stress[J]. Hot Working Technology, 2019, 48(24): 25-29. (in Chinese)
    [9] KOC M, CULP J, ALTAN T. Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes[J]. Journal of Materials Processing Technology, 2006, 174(1-3): 342-354. doi: 10.1016/j.jmatprotec.2006.02.007
    [10] TANNER D A, ROBINSON J S. Residual stress prediction and determination in 7010 aluminum alloy forgings[J]. Experimental Mechanics, 2000, 40(1): 75-82. doi: 10.1007/BF02327551
    [11] 翟瑞志, 尹慧, 滕树满. 大型7050铝合金自由锻件淬火残余应力消减研究[J]. 型铸锻件, 2022(4): 56-58.

    ZHAI R Z, YIN H, TENG S M. Study on quenching residual stress reduction of large free forgings of aluminum alloy 7050[J]. Heavy Casting and Forging, 2022(4): 56-58. (in Chinese)
    [12] 李晨, 张新全, 谢林军, 等. 淬火水温对7050铝合金残余应力及力学性能的影响[J]. 轻合金加工技术, 2022, 50(5): 60-64.

    LI C, ZHANG X Q, XIE L J, et al. Effect of water quenching temperature on residual stress and mechanical properties of 7050 aluminum alloy[J]. Light Alloy Fabrication Technology, 2022, 50(5): 60-64. (in Chinese)
    [13] GUO H, ZUO D W, WU H B, et al. Prediction on milling distortion for aero-multi-frame parts[J]. Materials Science and Engineering: A, 2009, 499(1-2): 230-233.
    [14] RAI J K, XIROUCHAKIS P. Finite element method based machining simulation environment for analyzing part errors induced during milling of thin-walled components[J]. International Journal of Machine Tools and Manufacture, 2008, 48(6): 629-643.
    [15] 王祝堂, 田荣璋. 铝合金及其加工手册[M]. 长沙: 中南工业大学出版社, 1989.

    WANG Z T, TIAN R Z. Aluminum alloy and handbook of machining[M]. Changsha: Central South University of Technology Press, 1989. (in Chinese)
    [16] TANNER D A, ROBINSON J S. Modelling stress reduction techniques of cold compression and stretching in wrought aluminium alloy products[J]. Finite Elements in Analysis and Design, 2003, 39(5-6): 369-386.
    [17] 李利. 铝合金板淬火残余应力的拉伸消除方法[J]. 轻合金加工技术, 1999, 27(5): 16-18.

    LI L. Stretch method to relieve residual stress in a aluminium alloy plate[J]. Light Alloy Fabrication Technology, 1999, 27(5): 16-18. (in Chinese)
    [18] 吴红兵. 航空框类整体结构件铣削加工变形的数值模拟与实验研究[D]. 杭州: 浙江大学, 2008.

    WU H B. Study on numerical simulation and experiment of milling process for aerospace monolithic components[D]. Hangzhou: Zhejiang University, 2008. (in Chinese)
    [19] 郭魂. 航空多框整体结构件铣削变形机理与预测分析研究[D]. 南京: 南京航空航天大学, 2005.

    GUO H. Study on mechanism and prediction analysis of machining distortion for aero-multi-frame monolithic structure parts[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2005. (in Chinese)
    [20] 徐飞飞. 整体薄壁结构件残余应力预测与铣削加工变形研究[D]. 大连: 大连理工大学, 2010.

    XU F F. Study on prediction of residual stress and machining distortion for monolithic thin-walled structural components[D]. Dalian: Dalian University of Technology, 2010. (in Chinese)
    [21] 董辉跃, 柯映林, 孙杰, 等. 铝合金厚板淬火残余应力的有限元模拟及其对加工变形的影响[J]. 航空学报, 2004, 25(4): 429-432.

    DONG H Y, KE Y L, SUN J, et al. Finite element method simulation for residual stress in quenched aluminum alloy thick-plate and its effect on machining distortion[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(4): 429-432. (in Chinese)
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  32
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-17
  • 刊出日期:  2024-01-25

目录

    /

    返回文章
    返回