留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多载荷历程作用下螺栓结合部特性实验及分析

卢世坤 华灯鑫 李鹏阳

卢世坤,华灯鑫,李鹏阳. 多载荷历程作用下螺栓结合部特性实验及分析[J]. 机械科学与技术,2023,42(8):1207-1212 doi: 10.13433/j.cnki.1003-8728.20230277
引用本文: 卢世坤,华灯鑫,李鹏阳. 多载荷历程作用下螺栓结合部特性实验及分析[J]. 机械科学与技术,2023,42(8):1207-1212 doi: 10.13433/j.cnki.1003-8728.20230277
LU Shikun, HUA Dengxin, LI Pengyang. Experimental and Analysis of Characteristics of Bolt Joint Under Multiple Load History[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1207-1212. doi: 10.13433/j.cnki.1003-8728.20230277
Citation: LU Shikun, HUA Dengxin, LI Pengyang. Experimental and Analysis of Characteristics of Bolt Joint Under Multiple Load History[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1207-1212. doi: 10.13433/j.cnki.1003-8728.20230277

多载荷历程作用下螺栓结合部特性实验及分析

doi: 10.13433/j.cnki.1003-8728.20230277
基金项目: 国家自然科学基金项目(51675422)
详细信息
    作者简介:

    卢世坤(1980−) ,博士研究生,研究方向为界面接触摩擦、斯特林发动机、复杂机电系统的动态特性,lushikun@163.com

  • 中图分类号: TH131

Experimental and Analysis of Characteristics of Bolt Joint Under Multiple Load History

  • 摘要: 以往对结合部刚度特性的研究多着重于不同粗糙度结合部的横向对比,较少或忽视了同一结合部在载荷作用下多次循环历程加载时加载前后刚度特性的纵向对比,以及忽视多次循环历程加载时加载前后表面部分微凸体高度变化的纵向对比。实际上,不论刚度特性还是界面部分微凸体,在多次载荷历程作用下都会变化,这就使预测设备的动静态性能复杂化。针对这一问题,本文基于实验研究了粗糙表面单元螺栓结合部刚度特性在循环载荷历程作用下的变化规律,为量化研究和更好的应用这一规律,对本文各载荷历程曲线进行了数值拟合。纵向比较研究发现:单元结合部刚度特性随载荷作用历程循环次数的变化而变化,即:随着载荷历程作用次数的增加,单元螺栓结合部变形减小,结合部刚度增加。为进一步了解刚度特性变化的机理,还对结合部接触表面进行了载荷作用后的显微镜观察,发现结合部螺栓孔附近的表面部分微凸体高度在螺栓多次循环预紧力作用下有不同程度的塑性变形。
  • 图  1  实验原理图

    Figure  1.  Schematic diagram of the experiment

    图  2  螺栓预紧扭矩施加图

    Figure  2.  Application of bolt preload torque

    图  3  预紧力矩施加方案

    Figure  3.  Application scheme of the pretension torque

    图  4  测试现场图及测点细节

    Figure  4.  Test site and test details

    图  5  螺栓被连接件变形测试原理图

    Figure  5.  Deformation measuring principle diagram of the connected parts

    图  6  螺栓连接结合面表面特征测试现场

    Figure  6.  Measurement of the surface characteristics of the interface

    图  7  实验测试的被连接件

    Figure  7.  Bolt connected parts

    图  8  M10单元螺栓结合部变形测试结果的曲线拟合

    Figure  8.  Curve fitting of deformation test results of M10 unit bolt joint

    图  9  M12螺栓单元结合部变形测试结果的曲线拟合

    Figure  9.  Curve fitting of deformation test results of M12 unit bolt joint

    图  10  M16螺栓单元结合部变形测试结果的曲线拟合

    Figure  10.  Curve fitting of deformation test results of M16 unit bolt joint

    图  11  电子显微镜表面塑性变形观察结果

    Figure  11.  Results of surface plastic deformation observed by electron microscope

    表  1  M10 螺栓连接参数表

    Table  1.   M10 bolt connection parameter table

    型号螺栓/螺母/
    被连接件材料
    螺栓头接
    触直径
    dhe/mm
    螺栓头
    厚度
    ahe/mm
    螺栓杆
    直径
    db/mm
    螺母接触
    直径
    dn/mm
    螺母
    厚度
    an/mm
    螺栓孔
    直径
    dh/mm
    被连接件
    厚度
    tm1/mm
    被连接件
    厚度
    tm2/mm
    M1045钢14.56.41014.58.2112020
    M1245钢16.57.51216.510.5131515
    M1645钢22.5101622.514.5171515
    下载: 导出CSV
  • [1] 刘刚, 王双义, 祁晓霞, 等. 兵装集团军工智能制造若干问题研究及应对策略[J]. 兵工自动化, 2017, 36(9): 1-4.

    LIU G, WANG S Y, QI X X, et al. Research and preventive solutions on several problems of military intelligence manufacturing of China south industries group corporation[J]. Ordnance Industry Automation, 2017, 36(9): 1-4. (in Chinese)
    [2] 刘鑫. 螺栓连接力学特性建模及在数控刀架系统中的应用[D]. 南京: 东南大学, 2017.

    LIU X. Modeling of mechanical properties of bolted joint interface and its application in CNC turret system[D]. Nanjing: Southeast University, 2017. (in Chinese)
    [3] 蔡力钢, 郝宇, 郭铁能, 等. 螺栓结合面法向静态刚度特性提取方法研究[J]. 振动与冲击, 2014, 33(16): 18-23.

    CAI L G, HAO Y, GUO T N, et al. Method of extracting normal static stiffness of bolted joint interfaces[J]. Journal of Vibration and Shock, 2014, 33(16): 18-23. (in Chinese)
    [4] ZHAO G, XIONG Z L, JIN X, et al. Prediction of contact stiffness in bolted interface with natural frequency experiment and FE analysis[J]. Tribology International, 2018, 127: 157-164. doi: 10.1016/j.triboint.2018.05.044
    [5] 章伊华, 庞奎, 林丹益, 等. 基于接触面特征的螺栓联接刚度研究[J]. 兵工学报, 2017, 38(1): 195-201.

    ZHANG Y H, PANG K, LIN D Y, et al. Study of bolt joint stiffness based on contact surface characteristics[J]. Acta Armamentarii, 2017, 38(1): 195-201. (in Chinese)
    [6] 朱瑞富, 李士同, 吕宇鹏, 等. Mn8钢TEM原位拉伸变形过程的动态观察[J]. 科学通报, 1996, 41(24): 2277-2280. doi: 10.1360/csb1996-41-24-2277

    ZHU R F, LI S T, LYU Y P, et al. Research on the strength and stiffness of the bolted joints of the overhanging end plate[J]. Chinese Science Bulletin, 1996, 41(24): 2277-2280. (in Chinese) doi: 10.1360/csb1996-41-24-2277
    [7] 杨辉, 韩江, 褚向前. 螺栓联接结构接触应力及结合面刚度影响因素研究[J]. 机械强度, 2015, 37(1): 128-132. doi: 10.16579/j.issn.1001.9669.2015.01.022

    YANG H, HAN J, CHU X Q. Bolt coupling structure of contact stress and the influence factors of joint stiffness[J]. Journal of Mechanical Strength, 2015, 37(1): 128-132. (in Chinese) doi: 10.16579/j.issn.1001.9669.2015.01.022
    [8] ALKATAN F, STEPHAN P, DAIDIE A, et al. Equivalent axial stiffness of various components in bolted joints subjected to axial loading[J]. Finite Elements in Analysis and Design, 2007, 43(8): 589-598. doi: 10.1016/j.finel.2006.12.013
    [9] SETHURAMAN R, SASI KUMAR T. Finite element based member stiffness evaluation of axisymmetric bolted joints[J]. Journal of Mechanical Design, 2009, 131(1): 011012. doi: 10.1115/1.3042147
    [10] MUSTO J C, KONKLE N R. Computation of member stiffness in the design of bolted joints[J]. Journal of Mechanical Design, 2006, 128(6): 1357-1360. doi: 10.1115/1.2338578
    [11] YANG G Q, HONG J, WANG N, et al. Member stiffnesses and interface contact characteristics of bolted joints[C]//Proceedings of 2011 IEEE International Symposium on Assembly and Manufacturing. Tampere: IEEE, 2011: 1-6.
    [12] KISHIMOTO Y, ENDO M. Development of an estimation method of dynamic characteristics of structures with bolted joints[J]. Transactions of the Japan Society of Mechanical Engineers Series C, 2007, 73(729): 1566-1573. (in Japanese)
    [13] YE H, HUANG Y M, LI P Y, et al. Virtual material parameter acquisition based on the basic characteristics of the bolt joint interfaces[J]. Tribology International, 2016, 95: 109-117. doi: 10.1016/j.triboint.2015.11.013
    [14] PEDERSEN N L, PEDERSEN P. Stiffness analysis and improvement of bolt-plate contact assemblies[J]. Mechanics Based Design of Structures and Machines, 2008, 36(1): 47-66. doi: 10.1080/15397730701735749
    [15] HAIDAR N, OBEED S, JAWAD M. Mathematical representation of bolted-joint stiffness: a new suggested model[J]. Journal of Mechanical Science and Technology, 2011, 25(11): 2827-2834. doi: 10.1007/s12206-011-0725-0
    [16] JUNG H S, HAN H S, JO J U, et al. Study on member stiffness of bolt joint structure[J]. Journal of the Korean Society of Manufacturing Technology Engineers, 2018, 27(3): 167-174. (in Korean)
    [17] 王雯, 吴洁蓓, 傅卫平, 等. 机械结合面法向动态接触刚度理论模型与试验研究[J]. 机械工程学报, 2016, 52(13): 123-130. doi: 10.3901/JME.2016.13.123

    WANG W, WU J B, FU W P, et al. Theoretical and experimental research on normal dynamic contact stiffness of machined joint surfaces[J]. Journal of Mechanical Engineering, 2016, 52(13): 123-130. (in Chinese) doi: 10.3901/JME.2016.13.123
    [18] 惠烨, 黄玉美, 李艳. 切向载荷下螺栓结合部静特性分析及试验[J]. 中国机械工程, 2015, 26(7): 892-898.

    HUI Y, HUANG Y M, LI Y. Theoretical analysis and test on static characteristics of bolt joints under tangential load[J]. China Mechanical Engineering, 2015, 26(7): 892-898. (in Chinese)
    [19] YACOUT A W, ISMAEEL A S, KASSAB S Z. The surface roughness effect on the dynamic stiffness and damping characteristics of the hydrostatic thrust spherical bearing: Part 4-fitted type of bearings[C]//Proceedings of the ASME 2006 International Mechanical Engineering Congress and Exposition. Chicago: ASME, 2006.
    [20] 李小彭, 郭强, 李加胜, 等. 结合面法向接触刚度分形预估模型及其仿真研究[J]. 中国工程机械学报, 2016, 14(4): 281-287.

    LI X P, GUO Q, LI J S, et al. Fractal prediction modeling and simulation on normal surface contact stiffness[J]. Chinese Journal of Construction Machinery, 2016, 14(4): 281-287. (in Chinese)
    [21] 李小彭, 王雪, 运海萌, 等. 考虑弹塑性变形的结合面静摩擦系数分形模型[J]. 东北大学学报(自然科学版), 2016, 37(5): 673-677.

    LI X P, WANG X, YUN H M, et al. Static friction coefficient fractal model of joint surfaces with elastic-plastic beformation considered[J]. Journal of Northeastern University (Natural Science), 2016, 37(5): 673-677. (in Chinese)
    [22] 温淑花, 张学良, 陈永会, 等. 结合面切向接触等效黏性阻尼分形模型[J]. 西安交通大学学报, 2017, 51(1): 1-8.

    WEN S H, ZHANG X L, CHEN Y H, et al. Fractal model of equivalent viscous damping for tangential contact in joint interfaces[J]. Journal of Xi'an Jiaotong University, 2017, 51(1): 1-8. (in Chinese)
    [23] COULES H E, HORNE G C M, VENKATA K A, et al. The effects of residual stress on elastic-plastic fracture propagation and stability[J]. Materials & Design, 2018, 143: 131-140.
    [24] XU G T, HAO M F, QIAO Y K, et al. Characterization of elastic-plastic properties of surface-modified layers introduced by carburizing[J]. Mechanics of Materials, 2020, 144: 103364. doi: 10.1016/j.mechmat.2020.103364
    [25] CHEN Z, ETSION I. The elastic-plastic contact behavior of rough surfaces with hard coatings[J]. Tribology International, 2019, 134: 435-442. doi: 10.1016/j.triboint.2019.02.025
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  42
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-23
  • 网络出版日期:  2023-09-13
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回