留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LaNi5储氢合金吸氢过程热特性研究

田英 柴牧 谭家辉 吴岱丰

田英, 柴牧, 谭家辉, 吴岱丰. LaNi5储氢合金吸氢过程热特性研究[J]. 机械科学与技术, 2023, 42(7): 1150-1157. doi: 10.13433/j.cnki.1003-8728.20230228
引用本文: 田英, 柴牧, 谭家辉, 吴岱丰. LaNi5储氢合金吸氢过程热特性研究[J]. 机械科学与技术, 2023, 42(7): 1150-1157. doi: 10.13433/j.cnki.1003-8728.20230228
TIAN Ying, CHAI Mu, TAN Jiahui, WU Daifeng. Study on Thermal Characteristics in Hydrogen Absorption of LaNi5 Hydrogen Storage Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(7): 1150-1157. doi: 10.13433/j.cnki.1003-8728.20230228
Citation: TIAN Ying, CHAI Mu, TAN Jiahui, WU Daifeng. Study on Thermal Characteristics in Hydrogen Absorption of LaNi5 Hydrogen Storage Alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(7): 1150-1157. doi: 10.13433/j.cnki.1003-8728.20230228

LaNi5储氢合金吸氢过程热特性研究

doi: 10.13433/j.cnki.1003-8728.20230228
基金项目: 

广东省基础与应用基础研究项目 2020A1515110080

广东省基础与应用基础研究项目 2020B151520006

广东省基础与应用基础研究项目 2021A1515010712

详细信息
    作者简介:

    田英(1986-), 实验师, 硕士, 研究方向为机电控制与测试技术, 新能源电池管理系统, ty_921@163.com

    通讯作者:

    柴牧, 讲师, 博士, chaimu@fosu.edu.cn

  • 中图分类号: TH122

Study on Thermal Characteristics in Hydrogen Absorption of LaNi5 Hydrogen Storage Alloy

  • 摘要: 建立了某金属氢化物反应器二维数值模型,并通过吸氢实验中反应器温度变化曲线验证了模型的准确性。对储氢反应器增加外部冷却槽,分析了不同冷却流体种类及流速下,反应器温度和储氢量的变化情况。结果表明:冷却水作用下,储氢罐中心区域的反应速率逐渐低于壁面区域,冷却水流速率越高,吸氢反应所需时间逐渐缩短至一个定值; 在相同流速下,冷却介质为水和油时,反应器温度与储氢量的变化特征相似,但水的冷却时间比油缩短约20%、储氢时间缩短约15%;当冷却介质为空气时,冷却槽内空气受热浮力影响,靠近壁面的空气流速降低且温度高于初始值,导致其与合金的温差缩小、传热能力降低,吸氢时间明显加长。
  • 图  1  吸氢反应平衡压强

    Figure  1.  Equilibrium pressure of hydrogen absorption reaction

    图  2  计算原理图

    Figure  2.  Calculation schematic diagram

    图  3  模型计算结果与实验测量结果对比

    Figure  3.  The results of model calculation are compared with experiment measurement

    图  4  带冷却槽的储氢反应器网格模型

    Figure  4.  Grid model of hydrogen storage reactor with cooling tank

    图  5  冷却水流速为0.02 m/s时反应器不同时刻的温度、储氢量及氢气流速分布云图

    Figure  5.  Temperature, hydrogen storage capacity and hydrogen flow velocity distribution of the reactor at different times when the cooling water flow rate is 0.02 m/s

    图  6  不同水流速下反应区域平均温度与储氢质量百分比随时间变化曲线

    Figure  6.  The average temperature and the percentage of hydrogen storage weight of the reaction area change with time under different water flow velocity

    图  7  冷却介质分别为水、油和空气时不同时刻反应罐的温度分布云图

    Figure  7.  Temperature distribution cloud map of the reactor at different time when the cooling medium is water, oil and air respectively

    图  8  冷却介质分别为水、油和空气时不同时刻反应罐的储氢量分布云图

    Figure  8.  Hydrogen storage distribution cloud map of the reactor at different time when the cooling medium is water, oil and air respectively

    图  9  不同冷却介质时反应区域的平均温度与储氢重量百分比随时间变化曲线

    Figure  9.  The average temperature and the percentage of hydrogen storage weight of the reaction area change with time in different cooling media

    表  1  主要参数

    Table  1.   Main parameters

    参数 数值
    初始温度T0/℃ 20
    参考温度Tref/℃ 30
    入口压强Pin/bar 10
    参考压强Pref/bar 10
    吸氢速率常数Ca/s 59.187
    活化能Ea/(J•mol-1) 21 179.6
    氢气热容CpH/[J•(mol•K)-1] 1 489
    储氢合金热容CpM/[J•(mol•K)-1] 419
    氢气导热系数kg/[W•(m•K)-1] 0.167
    合金导热系数ks/[W•(m•K)-1] 3.18
    储氢合金孔隙率ε 0.63
    孔隙区渗透率K/m2 10-8
    冷却温度Ts/℃ 20
    合金密度ρM/(kg•m-3) 5 300
    饱和合金密ρsat/(kg•m-3) 5 369
    下载: 导出CSV

    表  2  冷却介质的属性参数

    Table  2.   Attribute properties

    冷却介质 空气
    热容/[J•(mol•K)-1] 4 182 1 845 1 006.43
    导热系数/[W•(m•K)-1] 0.6 0.145 0.024 2
    下载: 导出CSV
  • [1] THOMAS K M. Hydrogen adsorption and storage on porous materials[J]. Catalysis Today, 2007, 120(3-4): 389-398. doi: 10.1016/j.cattod.2006.09.015
    [2] RUSMAN N A A, DAHARI M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications[J]. International Journal of Hydrogen Energy, 2016, 41(28): 12108-12126. doi: 10.1016/j.ijhydene.2016.05.244
    [3] BARTHELEMY H, WEBER M, BARBIER F. Hydrogen storage: recent improvements and industrial perspectives[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7254-7262. doi: 10.1016/j.ijhydene.2016.03.178
    [4] SONG J, WANG Y Q, LI S S, et al. Numerical and experimental study of La-Ni hydriding kinetics based on the varying-size model[J]. Chemical Engineering Science, 2018, 176: 580-599. doi: 10.1016/j.ces.2017.11.010
    [5] 鲍泽威, 朱泽志, 牟晓锋, 等. 金属氢化物储氢反应器放氢特性的数值模拟[J]. 工程科学与技术, 2021, 53(2): 151-157. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202102018.htm

    BAO Z W, ZHU Z Z, MOU X F, et al. Numerical simulation of hydrogen desorption characteristics in metal hydride reactor for hydrogen storage[J]. Advanced Engineering Sciences, 2021, 53(2): 151-157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202102018.htm
    [6] BAYKARA S Z. Hydrogen: a brief overview on its sources, production and environmental impact[J]. International Journal of Hydrogen Energy, 2018, 43(23): 10605-10614. doi: 10.1016/j.ijhydene.2018.02.022
    [7] MARTY P, DE RANGO P, DELHOMME B, et al. Various tools for optimizing large scale magnesium hydride storage[J]. Journal of Alloys and Compounds, 2013, 580(S1): S324-S328.
    [8] NAM J, KO J, JU H. Three-dimensional modeling and simulation of hydrogen absorption in metal hydride hydrogen storage vessels[J]. Applied Energy, 2012, 89(1): 164-175. doi: 10.1016/j.apenergy.2011.06.015
    [9] CHIPPAR P, LEWIS S D, RAI S, et al. Numerical investigation of hydrogen absorption in a stackable metal hydride reactor utilizing compartmentalization[J]. International Journal of Hydrogen Energy, 2018, 43(16): 8007-8017. doi: 10.1016/j.ijhydene.2018.03.017
    [10] CHANDRA S, SHARMA P, MUTHUKUMAR P, et al. Modeling and numerical simulation of a 5kg LaNi5-based hydrogen storage reactor with internal conical fins[J]. International Journal of Hydrogen Energy, 2020, 45(15): 8794-8809. doi: 10.1016/j.ijhydene.2020.01.115
    [11] EL MGHARI H, HUOT J, XIAO J S. Analysis of hydrogen storage performance of metal hydride reactor with phase change materials[J]. International Journal of Hydrogen Energy, 2019, 44(54): 28893-28908. doi: 10.1016/j.ijhydene.2019.09.090
    [12] WANG Y, ADROHER X C, CHEN J X, et al. Three-dimensional modeling of hydrogen sorption in metal hydride hydrogen storage beds[J]. Journal of Power Sources, 2009, 194(2): 997-1006. doi: 10.1016/j.jpowsour.2009.06.060
    [13] KYOUNG S, FEREKH S, GWAK G, et al. Three- dimensional modeling and simulation of hydrogen desorption in metal hydride hydrogen storage vessels[J]. International Journal of Hydrogen Energy, 2015, 40(41): 14322-14330. doi: 10.1016/j.ijhydene.2015.03.114
    [14] CHIBANI A, BOUGRIOU C. Effect of the tank geometry on the storage and destocking of hydrogen on metal hydride (LaNi5-H2)[J]. International Journal of Hydrogen Energy, 2017, 42(36): 23035-23044. doi: 10.1016/j.ijhydene.2017.07.102
    [15] JEMNI A, NASRALLAH S B, LAMLOUMI J. Experimental and theoretical study of Ametal-hydrogen reactor[J]. International Journal of Hydrogen Energy, 1999, 24(7): 631-644. doi: 10.1016/S0360-3199(98)00117-7
    [16] GKANAS E I, GRANT D M, KHZOUZ M, et al. Efficient hydrogen storage in up-scale metal hydride tanks as possible metal hydride compression agents equipped with aluminium extended surfaces[J]. International Journal of Hydrogen Energy, 2016, 41(25): 10795-10810. doi: 10.1016/j.ijhydene.2016.04.035
    [17] ASKRI F, JEMNI A, NASRALLAH S B. Dynamic behavior of metal-hydrogen reactor during hydriding process[J]. International Journal of Hydrogen Energy, 2004, 29(6): 635-647. doi: 10.1016/S0360-3199(03)00220-9
    [18] DHAOU H, ASKRI F, SALAH M B, et al. Measurement and modelling of kinetics of hydrogen sorption by LaNi5 and two related pseudobinary compounds[J]. International Journal of Hydrogen Energy, 2007, 32(5): 576-587. doi: 10.1016/j.ijhydene.2006.07.001
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  324
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-13
  • 刊出日期:  2023-07-25

目录

    /

    返回文章
    返回