留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

研磨抛光颗粒流剪切膨胀及力链演变的力学机制

冯启高 甘梓辰 孟凡净

冯启高, 甘梓辰, 孟凡净. 研磨抛光颗粒流剪切膨胀及力链演变的力学机制[J]. 机械科学与技术, 2024, 43(7): 1214-1221. doi: 10.13433/j.cnki.1003-8728.20230047
引用本文: 冯启高, 甘梓辰, 孟凡净. 研磨抛光颗粒流剪切膨胀及力链演变的力学机制[J]. 机械科学与技术, 2024, 43(7): 1214-1221. doi: 10.13433/j.cnki.1003-8728.20230047
FENG Qigao, GAN Zichen, MENG Fanjing. Mechanical Mechanisms of Shear Dilatancy and Force Chain Evolution in Abrasive Polishing Granular Flow[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1214-1221. doi: 10.13433/j.cnki.1003-8728.20230047
Citation: FENG Qigao, GAN Zichen, MENG Fanjing. Mechanical Mechanisms of Shear Dilatancy and Force Chain Evolution in Abrasive Polishing Granular Flow[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1214-1221. doi: 10.13433/j.cnki.1003-8728.20230047

研磨抛光颗粒流剪切膨胀及力链演变的力学机制

doi: 10.13433/j.cnki.1003-8728.20230047
基金项目: 

国家自然科学基金项目 52175397

国家自然科学基金项目 51605150

河南省高等学校重点科研项目 22A460019

详细信息
    作者简介:

    冯启高, 教授, 硕士生导师, 博士, fqg@hist.edu.cn

    通讯作者:

    孟凡净, 教授, 硕士生导师, 博士, mengfanjing0901@126.com

  • 中图分类号: TG156

Mechanical Mechanisms of Shear Dilatancy and Force Chain Evolution in Abrasive Polishing Granular Flow

  • 摘要: 将研磨抛光作为后处理可以提高工件的表面质量, 如何将研磨抛光工艺价值最大化是本文首要解决的问题。由于颗粒流润滑既适用于极端环境又具有环保作用, 因此本文将颗粒流用于研磨抛光。通过离散单元法建立平行板结构模型, 将颗粒流作为第三体填充至摩擦副间隙, 将工件表面与刀具作为第一体对颗粒流体系施加法向力和剪切力, 对研磨抛光过程进行数值模拟。研究结果表明: 单个颗粒剪切膨胀过程可以分为上升阶段、最高点阶段和下降阶段, 不同阶段的弱力链方向都偏向于x轴, 其中上升阶段强弱力链方向稳定, 可提高工件的加工效率以及表面质量。当载荷的较大, 会使强弱力链的分布律与承载率稳定, 当载荷较大及较小时, 剪切膨胀率降低, 强力链方向更偏向于x轴。通过本研究, 可以将不易检测的力链和剪切膨胀现象进行数值模拟, 为研磨抛光条件下使用颗粒流提供了理论基础。
  • 图  1  研磨抛光颗粒流的离散元数值模型(单位:μm)

    Figure  1.  The numerical model with discrete elements of granular flow on grinding and polishing(unit: μm)

    图  2  仿真模拟流程

    Figure  2.  The simulation procedure

    图  3  剪切膨胀的过程

    Figure  3.  The process of shear dilatancy

    图  4  加载面的位移过程

    Figure  4.  The displacements process of loading surface

    图  5  驱动面的接触力变化

    Figure  5.  The change of contact force on driving surface

    图  6  最大不平衡力与不平衡力分量比Qu的变化

    Figure  6.  The change of maximum unbalance force and unbalance force ratio Qu

    图  7  接触力分量比Qc的变化

    Figure  7.  The change of contact force ratio Qc

    图  8  弱力链的分布律与承载率

    Figure  8.  The distribution rate and bearing rate of weak force chain

    图  9  不同载荷下最大非平衡力的变化

    Figure  9.  The change of maximum unbalance force under different load

    图  10  不同载荷下剪切膨胀率λs的变化

    Figure  10.  The change of shear dilatancy ratio λs under different load

    图  11  不同载荷下最大接触力的变化

    Figure  11.  The change of maximum contact force under different loads

    图  12  不同载荷下弱力链的分布律与承载率

    Figure  12.  The distribution rate and bearing rate of weak force chain under different loads

    图  13  接触力分量比Qc随载荷的变化

    Figure  13.  The change of contact force ratio Qc with different loads

    表  1  参数名称及数值

    Table  1.   The names and values of parameters

    参数 数值
    上部加载面载荷P/10-4 N 6.60
    加载面密度/(kg·m-3) 8 190
    加载面剪切模量/GPa 77.20
    加载面泊松比 0.30
    加载面与颗粒的摩擦因数 0.36
    颗粒的粒径D/μm 40
    颗粒间摩擦因数 0.24
    下部驱动面速度v/(m·s-1) 0.50
    驱动面与颗粒间摩擦因数 0.32
    颗粒密度/(kg·m-3) 2 400
    颗粒的剪切模量/GPa 198
    颗粒的泊松比 0.17
    颗粒的层数L 3
    下载: 导出CSV
  • [1] 张宏君. 研磨、珩磨、抛光技术在机械制造中的应用[J]. 黑龙江科学, 2021, 12(8): 108-109. doi: 10.3969/j.issn.1674-8646.2021.08.047

    ZHANG H J. Application of grind, honing and polishing technology in machine manufacturing[J]. Heilongjiang Science, 2021, 12(8): 108-109. (in Chinese) doi: 10.3969/j.issn.1674-8646.2021.08.047
    [2] 周光明. 铁素体不锈钢研磨工艺研发与应用[J]. 山西冶金, 2021, 44(4): 50-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYZ202104017.htm

    ZHOU G M. Development and application of ferrite stainless steel grinding process[J]. Shanxi Metallurgy, 2021, 44(4): 50-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDYZ202104017.htm
    [3] JIAO Z H, KANG R K, DONG Z G, et al. Microstructure characterization of W-Ni-Fe heavy alloys with optimized metallographic preparation method[J]. International Journal of Refractory Metals and Hard Materials, 2019, 80: 114-122. doi: 10.1016/j.ijrmhm.2019.01.011
    [4] 罗桂海. 新型石材研磨抛光技术与基体特性研究[J]. 现代制造技术与装备, 2019(6): 13-14. doi: 10.3969/j.issn.1673-5587.2019.06.009

    LUO G H. Study on the characteristics of new stone grinding and polishing[J]. Modern Manufacturing Technology and Equipment, 2019(6): 13-14. (in Chinese) doi: 10.3969/j.issn.1673-5587.2019.06.009
    [5] 史晓琳. 钨合金研磨抛光表面形貌形成机理及工艺研究[D]. 大连: 大连理工大学, 2020.

    SHI X L. Study on surface topography formation mechanism and process in lapping and polishing of tungsten alloy[D]. Dalian: Dalian University of Technology, 2020. (in Chinese)
    [6] 郑锦华, 吴双, 魏新煦, 等. 研磨抛光表面微孔织构的形成[J]. 光学精密程, 2016, 24(4): 788-795. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201604014.htm

    ZHENG J H, WU S, WEI X X, et al. Formation of surface micro-pore texture by grinding and polishing[J]. Optical and Precision Engineering, 2016, 24(4): 788-795. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201604014.htm
    [7] 刘宁, 朱永伟, 李学, 等. 硬脆材料平面研抛的材料去除机理研究进展[J]. 材料导报, 2022, 36(7): 21060121. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202207007.htm

    LIU N, ZHU Y W, LI X, et al. Research progress of material removal mechanism in plane lapping and polishing of hard-brittle materials[J]. Materials Reports, 2022, 36(7): 21060121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202207007.htm
    [8] KILIÇ V, GÖK A. Effect of different polishing systems on the surface roughness of various bulk-fill and Nano-filled resin-based composites: An atomic force microscopy and scanning electron microscopy study[J]. Microscopy Research and Technique, 2021, 84(9): 2058-2067. doi: 10.1002/jemt.23761
    [9] DE SOUZA R H, KAIZER M R, BORGES C E P, et al. Flexural strength and crystalline stability of a monolithic translucent zirconia subjected to grinding, polishing and thermal challenges[J]. Ceramics International, 2020, 46(16): 26168-26175. doi: 10.1016/j.ceramint.2020.07.114
    [10] LI J, TANG Y K, SONG L L, et al. Effect of FAP characteristics on fixed abrasive polishing of CaF2crystal[J]. International Journal of Nanomanufacturing, 2019, 15(3): 259-268. doi: 10.1504/IJNM.2019.100460
    [11] CADORE-RODRIGUES A C, MACHRY R V, ZUCUNI C P, et al. Grinding and polishing of the inner surface of monolithic simplified restorations made of zirconia polycrystals and lithium disilicate glass-ceramic: Effects on the load-bearing capacity under fatigue of the bonded restorations[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 124: 104833. doi: 10.1016/j.jmbbm.2021.104833
    [12] ZUCUNI C P, PEREIRA G K R, VALANDRO L F. Grinding, polishing and glazing of the occlusal surface do not affect the load-bearing capacity under fatigue and survival rates of bonded monolithic fully-stabilized zirconia simplified restorations[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103: 103528. doi: 10.1016/j.jmbbm.2019.103528
    [13] 张桐齐, 岳晓斌, 雷大江, 等. 磨粒半径对金刚石研磨加工影响机制的仿真研究[J]. 金刚石与磨料磨具工程, 2021, 41(1): 89-94. https://www.cnki.com.cn/Article/CJFDTOTAL-JGSM202101016.htm

    ZHANG T Q, YUE X B, LEI D J, et al. Simulation study on influence mechanism of abrasive radius on diamond grinding[J]. Diamond & Abrasives Engineering, 2021, 41(1): 89-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGSM202101016.htm
    [14] 李俊烨, 胡敬磊, 杨兆军, 等. 离散相磨粒粒径对磨粒流研抛共轨管质量的影响[J]. 吉林大学学报(工学版), 2018, 48(2): 492-499. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201802020.htm

    LI J Y, HU J L, YANG Z J, et al. Effect of the size of discrete phase abrasive particles on the abrasive flow polishing quality of common rail pipe[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(2): 492-499. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201802020.htm
    [15] XIAO X L, LI G X, MEI H J, et al. Polishing of silicon nitride ceramic balls by clustered magnetorheological finish[J]. Micromachines, 2020, 11(3): 304. doi: 10.3390/mi11030304
    [16] 赵金鑫. 基于离散元法的卧式行星研磨机筒内介质仿真分析[D]. 鞍山: 辽宁科技大学, 2021.

    ZHAO J X. Simulation analysis of the medium in the cylinder of the horizontal planetary Grinder Based on the discrete element method[D]. Anshan: University of Science and Technology Liaoning, 2021. (in Chinese)
    [17] 李奎. 磁粒研磨加工过程的离散元仿真分析[D]. 鞍山: 辽宁科技大学, 2021.

    LI K. Discrete element simulation analysis of magnetic abrasive finishing[D]. Anshan: University of Science and Technology Liaoning, 2021. (in Chinese)
    [18] XIU T X, WANG W, LIU K, et al. Characteristics of force chains in frictional interface during abrasive flow machining based on discrete element method[J]. Advances in Manufacturing, 2018, 6(4): 355-375. doi: 10.1007/s40436-018-0236-7
    [19] 石崇, 张强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用[M]. 北京: 中国建筑工业出版社, 2018: 87-88.

    SHI C, ZHANG Q, WANG S N. Numerical simulation technology and application with particle flow code (PFC5.0)[M]. Beijing: China Architecture & Building Press, 2018: 87-88. (in Chinese)
    [20] IORDANOFF I, KHONSARI M M. Granular lubrication: toward an understanding of the transition between kinetic and quasi-fluid regime[J]. Journal of Tribology, 2004, 126(1): 137-145. doi: 10.1115/1.1633575
    [21] CUNDALL P A, STRACK A. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47
    [22] 石崇, 徐卫亚. 颗粒流数值模拟技巧与实践[M]. 北京: 中国建筑工业出版社, 2015: 1-2.

    SHI C, XU W Y. Numerical simulation skills and practice of particle flow[M]. Beijing: China Architecture & Building Press, 2015: 1-2. (in Chinese)
    [23] 江凯. 聚合物复合材料摩擦界面纵向迁移的数值模拟[D]. 合肥: 合肥工业大学, 2016.

    JIANG K. Numerical simulation of the vertical migration on the friction interface of polymeric composites[D]. Hefei: Hefei University of Technology, 2016. (in Chinese)
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-17
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回