留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑轮压载荷的铸造起重机多轴疲劳特性分析

冯梓彬 魏国前 郭子贤 余震

冯梓彬, 魏国前, 郭子贤, 余震. 考虑轮压载荷的铸造起重机多轴疲劳特性分析[J]. 机械科学与技术, 2024, 43(7): 1277-1282. doi: 10.13433/j.cnki.1003-8728.20230044
引用本文: 冯梓彬, 魏国前, 郭子贤, 余震. 考虑轮压载荷的铸造起重机多轴疲劳特性分析[J]. 机械科学与技术, 2024, 43(7): 1277-1282. doi: 10.13433/j.cnki.1003-8728.20230044
FENG Zibin, WEI Guoqian, GUO Zixian, YU Zhen. Multiaxial Fatigue Analysis of Casting Crane Considering Wheel Pressure Loads[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1277-1282. doi: 10.13433/j.cnki.1003-8728.20230044
Citation: FENG Zibin, WEI Guoqian, GUO Zixian, YU Zhen. Multiaxial Fatigue Analysis of Casting Crane Considering Wheel Pressure Loads[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1277-1282. doi: 10.13433/j.cnki.1003-8728.20230044

考虑轮压载荷的铸造起重机多轴疲劳特性分析

doi: 10.13433/j.cnki.1003-8728.20230044
基金项目: 

国家自然科学基金项目 51575408

国家自然科学基金项目 52175481

详细信息
    作者简介:

    冯梓彬,硕士研究生,1803730453@qq.com

    通讯作者:

    魏国前,教授,博士生导师,博士,weiguoqian@wust.edu.cn

  • 中图分类号: TG231.1

Multiaxial Fatigue Analysis of Casting Crane Considering Wheel Pressure Loads

  • 摘要: 铸造起重机金属结构是一种典型的复杂焊接结构,在移动轮压载荷和复杂焊缝几何的共同作用下,一些非常规部位时常出现疲劳裂纹。针对某在役铸造起重机主梁轨道下方T型钢与小筋板连接焊缝区域发生的密集疲劳裂损问题,采用Soild-Shell混合单元和子模型技术,建立了裂损局部区域的精细有限元模型,模拟了移动轮压载荷作用下整体金属结构的完整应力时间历程,分析了裂损部位的多轴特性。采用基于临界平面法的多轴疲劳模型,计算并讨论了裂损区域的疲劳性能。结果表明:多轴应力是导致裂损部位萌生裂纹的主要原因,F-S多轴疲劳模型可以有效评估裂损部位的疲劳性能。
  • 图  1  铸造起重机主梁截面结构

    Figure  1.  Casting crane girder section structure

    图  2  外主梁裂纹分布图

    Figure  2.  Crack distribution diagram of outer main girder

    图  3  小筋板底部应力分布示意图

    Figure  3.  Stress distribution diagram of the small rib plate bottom

    图  4  多层有限元模型示意图

    Figure  4.  Schematic diagram of multistage finite element model

    图  5  两种模型应力分布对比

    Figure  5.  Comparison of stress distribution of two models

    图  6  多轴载荷路径

    Figure  6.  Multiaxial load path

    图  7  多轴指标参量计算分布图

    Figure  7.  Multiaxial parameter calculation distribution diagram

    图  8  典型位置的临界平面示意图

    Figure  8.  The critical plane schematic diagram of typical position

    图  9  待分析损伤平面示意图

    Figure  9.  Schematic diagram of damage plane to be analyzed

    图  10  FP分布的计算结果

    Figure  10.  The calculation results of FP distribution

    图  11  疲劳寿命分布曲线

    Figure  11.  Fatigue life distribution curves

    表  1  Q345弹塑性本构模型参数

    Table  1.   Parameters of Q345 elastoplastic constitutive model

    E/MPa ν K/MPa n
    2.05×105 0.3 679.933 0.109
    下载: 导出CSV

    表  2  相关系数取值[14]

    Table  2.   Value of correlation coefficient[14]

    剪切疲劳强度系数τf 剪切疲劳延性系数γf 剪切疲劳强度指数b0 剪切疲劳延性系数c0
    617 1.568 -0.101 -0.651
    下载: 导出CSV
  • [1] 渠晓刚, 温鑫, 张晓康. 基于损伤力学的桥式起重机疲劳寿命分析[J]. 安全与环境学报, 2021, 21(3): 1012-1016. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202103013.htm

    QU X G, WEN X, ZHANG X K. Assessing and analysis of the fatigue life of the bridge-type crane based on the damage mechanics[J]. Journal of Safety and Environment, 2021, 21(3): 1012-1016. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202103013.htm
    [2] 辛运胜, 董青, 徐格宁. 轨道连接处缺陷对起重机运行冲击系数及疲劳剩余寿命的影响[J]. 机械工程学报, 2020, 56(14): 254-264. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202014026.htm

    XIN Y S, DONG Q, XU G N. Influence of rail joint defects on the running impact coefficient and fatigue residual life of crane[J]. Journal of Mechanical Engineering, 2020, 56(14): 254-264. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202014026.htm
    [3] 杨正茂, 孟文俊. 基于支持向量机的桥式起重机金属结构非概率可靠性分析[J]. 机械科学与技术, 2015, 34(3): 381-385. doi: 10.13433/j.cnki.1003-8728.2015.0312

    YANG Z M, MENG W J. Non-probabilistic reliability analysis of bridge crane metal structure based on support vector machine[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(3): 381-385. (in Chinese) doi: 10.13433/j.cnki.1003-8728.2015.0312
    [4] 魏国前, 施棋博, 刘京. 铸造起重机金属结构的疲劳评定方法研究[J]. 机械设计与制造, 2018(9): 128-131. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201809037.htm

    WEI G Q, SHI Q B, LIU J. Investigation on fatigue evaluation method for casting crane metal structure[J]. Machinery Design & Manufacture, 2018(9): 128-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201809037.htm
    [5] 周超, 万金镇, 郑健. 基于等效结构应力法的起重机箱形结构焊缝疲劳强度分析[J]. 机械设计与制造, 2013(5): 232-234. doi: 10.3969/j.issn.1001-3997.2013.05.071

    ZHOU C, WAN J Z, ZHENG J. The weld fatigue strength analysis of box girder with equivalent stress method[J]. Machinery Design & Manufacture, 2013(5): 232-234. (in Chinese) doi: 10.3969/j.issn.1001-3997.2013.05.071
    [6] 焦学勇. 大车轨道对铸造起重机开裂的影响[J]. 起重运输机械, 2022(7): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-QZJJ202207006.htm

    JIAO X Y. Influence of cart track on cracking of casting crane[J]. Hoisting and Conveying Machinery, 2022(7): 45-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QZJJ202207006.htm
    [7] 平克楠. 铸造起重机主要结构易发生损伤破坏的部位类型危害及控制[J]. 科技与创新, 2019(6): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KJYX201906004.htm

    PING K N. Damage and control of parts of main structure of casting crane that are prone to damage[J]. Science and Technology & Innovation, 2019(6): 11-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJYX201906004.htm
    [8] KETTLER M, DERLER C, SCHÖRGHOFER A, et al. Laboratory and numerical tests on real crane runway girder with box section[J]. Journal of Constructional Steel Research, 2019, 160: 540-558. doi: 10.1016/j.jcsr.2019.06.002
    [9] EULER M, KUHLMANN U. Crane runways-Fatigue evaluation of crane rail welds using local concepts[J]. International Journal of Fatigue, 2011, 33(8): 1118-1126. doi: 10.1016/j.ijfatigue.2011.02.010
    [10] RETTENMEIER P, ROOS E. Fatigue assessment of full-scale welded crane runway girders[J]. Materials Testing, 2015, 57(2): 110-118. doi: 10.3139/120.110687
    [11] RETTENMEIER P, ROOS E, WEIHE S. Fatigue analysis of multiaxially loaded crane runway structures including welding residual stress effects[J]. International Journal of Fatigue, 2016, 82: 179-187. doi: 10.1016/j.ijfatigue.2015.04.009
    [12] KHERKHAR A, CHIBA Y, TLEMANI A, et al. Thermal investigation of a thermoelectric cooler based on Arduino and PID control approach[J]. Case Studies in Thermal Engineering, 2022, 36: 102249. doi: 10.1016/j.csite.2022.102249
    [13] FATEMI A, SOCIE D F. A critical plane approach to multiaxial fatigue damage including out-of-phase loading[J]. Fatigue & Fracture of Engineering Materials & Structures, 1988, 11(3): 149-165.
    [14] LI J, LIU J, SUN Q, et al. A modification of Smith-Watson-Topper damage parameter for fatigue life prediction under non-proportional loading[J]. Fatigue & Fracture of Engineering Materials & Structures, 2012, 35(4): 301-316.
    [15] HOBBACHER A. Recommendations for fatigue design of welded joints and components; IIW Doc. IIW-1823-07 (rev of. IIW XIII 1539-96)[Z]. The International Institute of Welding (IIW), 2008.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-16
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回