留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轴向柱塞泵配流副椭圆开口偏置类抛物线微织构多目标优化

徐平 罗晶 董立鹏 于英华 沈佳兴 黎文利

徐平, 罗晶, 董立鹏, 于英华, 沈佳兴, 黎文利. 轴向柱塞泵配流副椭圆开口偏置类抛物线微织构多目标优化[J]. 机械科学与技术, 2024, 43(7): 1189-1198. doi: 10.13433/j.cnki.1003-8728.20230040
引用本文: 徐平, 罗晶, 董立鹏, 于英华, 沈佳兴, 黎文利. 轴向柱塞泵配流副椭圆开口偏置类抛物线微织构多目标优化[J]. 机械科学与技术, 2024, 43(7): 1189-1198. doi: 10.13433/j.cnki.1003-8728.20230040
XU Ping, LUO Jing, DONG Lipeng, YU Yinghua, SHEN Jiaxing, LI Wenli. Multi-objective Optimization of Elliptic Opening Offset Parabola Micro-texture in Port Plate Pair of Axial Piston Pump[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1189-1198. doi: 10.13433/j.cnki.1003-8728.20230040
Citation: XU Ping, LUO Jing, DONG Lipeng, YU Yinghua, SHEN Jiaxing, LI Wenli. Multi-objective Optimization of Elliptic Opening Offset Parabola Micro-texture in Port Plate Pair of Axial Piston Pump[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1189-1198. doi: 10.13433/j.cnki.1003-8728.20230040

轴向柱塞泵配流副椭圆开口偏置类抛物线微织构多目标优化

doi: 10.13433/j.cnki.1003-8728.20230040
基金项目: 

国家自然科学基金项目 52005238

辽宁省教育厅科学技术研究(重点攻关)项目 LJ2020ZD001

详细信息
    作者简介:

    徐平,教授,博士生导师,博士,lnxuping@163.com

  • 中图分类号: TH117

Multi-objective Optimization of Elliptic Opening Offset Parabola Micro-texture in Port Plate Pair of Axial Piston Pump

  • 摘要: 为了提高轴向柱塞泵配流副承载性能、抗摩擦磨性能及容积效率,以某型斜盘式轴向柱塞泵配流盘为原型开展研究。首先,依据正交实验理论采用CFD方法研究椭圆开口偏置抛物线微织构(Elliptic opening offset parabola micro texture,EOOPT)形状参数对轴向柱塞泵配流副承载压强、摩擦因数的影响规律,并联合运用神经网络和遗传算法对EOOPT的形状参数进行优化设计。其次,运用响应面分析方法研究EOOPT分布参数对配流副承载压强、摩擦因数和泄漏量的影响规律,并对形状参数进行优化设计。最后对最优特征参数EOOPT织构化的柱塞泵配流副和未织构的相关性能进行对比分析,结果表明,前者的承载压强较后者提高11.23%,摩擦因数和泄漏量分别减低16.67%和2.96%。
  • 图  1  原型轴向柱塞泵结构

    Figure  1.  Prototype axial piston pump structure

    图  2  配流副油膜模型示意图

    Figure  2.  Oil film model port plate pair

    图  3  柱塞泵运动结构原理图

    Figure  3.  Principles of piston pump motion structure

    图  4  配流副流体域模型的3个出口位置图

    Figure  4.  Three outlet positions of the fluid domain model of the port plate pair

    图  5  原型轴向柱塞泵配流副相关流体域压强云图

    Figure  5.  Pressure cloud diagram of related fluid domain of prototype axial piston pump port plate pair

    图  6  原型柱塞泵等效速度矢量图

    Figure  6.  Equivalent velocity vector diagram of prototype piston pump

    图  7  微织构构型及布置

    Figure  7.  Micro-texture configuration and arrangement

    图  8  神经网络拓扑结构图

    Figure  8.  Neural network topological structure

    图  9  最优解随进化代数收敛过程

    Figure  9.  The convergence process of the optimal solution with evolution ary generations

    图  10  承载压强云图

    Figure  10.  Loading pressure cloud diagram

    图  11  剪切应力云图

    Figure  11.  Shear stress nephogram

    图  12  分布参数对承载压强交互作用响应面

    Figure  12.  Response surface of interaction between distribution parameters and load pressure

    图  13  最优微织构配流副油膜流体域模型

    Figure  13.  Oil film fluid domain model of aptimal micro-textured port plate pair

    图  14  最优微织构配流副压强分布云图

    Figure  14.  The pressure distribution cloud diagram of the optimal micro-textured port plate pair

    图  15  最优微织构配流副油膜流速矢量图

    Figure  15.  Oil film velocity vector diagram of optimal micro-textured port plate pair

    图  16  微织构试环

    Figure  16.  Micro-texture test ring

    图  17  摩擦因数随时间变化关系

    Figure  17.  Changes of friction coefficient with time

    表  1  主要参数

    Table  1.   Main parameters

    参数 油运动黏度η/(mm2·s-1) 柱塞分布圆半径Rd/mm 柱塞直径d/mm 斜盘倾角β/(°) 泵轴转速n/(r·min-1) 油密度ρ/(kg·m-3) 入口压力Pin/MPa 出口压力Pout/MPa
    数值 16×10-6 31.75 20 18 1 500 900 0.2 25
    下载: 导出CSV

    表  2  形状参数正交实验方案及仿真分析结果

    Table  2.   Orthogonal experimental scheme and simulation analysis results of shape parameters

    试验序号 a/μm b/μm hb/μm e/μm ρ0 p/Pa μ
    1 240 80 80 0 0.2 210 907 0.033
    2 240 120 100 20 0.4 210 707 0.032
    3 240 160 120 40 0.6 210 702 0.032
    4 240 200 140 60 0.8 56 001 0.188
    5 240 240 160 80 1.0 157 032 0.053
    6 300 80 100 40 0.8 210 832 0.033
    7 300 120 120 60 1.0 112 922 0.073
    8 300 160 140 80 0.2 210 349 0.030
    9 300 200 160 0 0.4 210 002 0.029
    10 300 240 80 20 0.6 210 963 0.030
    11 360 80 120 80 0.4 210 805 0.032
    12 360 120 140 0 0.6 210 101 0.031
    13 360 160 160 20 0.8 210 227 0.030
    14 360 200 80 40 1.0 211 250 0.031
    15 360 240 100 60 0.2 210 344 0.028
    16 420 80 140 20 1.0 211 189 0.032
    17 420 120 160 40 0.2 209 897 0.030
    18 420 160 80 60 0.4 211 147 0.030
    19 420 200 100 80 0.6 211 344 0.028
    20 420 240 120 0 0.8 210 223 0.027
    21 480 80 160 60 0.6 208 735 0.029
    22 480 120 80 80 0.8 211 620 0.031
    23 480 160 100 0 1.0 76 446 0.141
    24 480 200 120 20 0.2 209 830 0.025
    25 480 240 140 40 0.4 210 281 0.023
    下载: 导出CSV

    表  3  极差分析结果

    Table  3.   Range analysis results

    因素 a/μm b/μm hb/μm e/μm ρ0
    K11 169 070 21 0494 211 178 183 536 210 265
    K12 191 014 19 1049 183 935 210 583 210 589
    K13 210 545 18 3774 190 896 210 592 210 369
    K14 210 760 17 9685 179 584 159 830 179 780
    K15 183 383 19 9769 199 179 200 230 153 768
    R1 41 690 30 808 31 593 50 762 56 820
    K21 0.068 0.032 0.031 0.052 0.028
    K22 0.039 0.039 0.052 0.030 0.029
    K23 0.030 0.052 0.038 0.030 0.030
    K24 0.029 0.060 0.061 0.070 0.062
    K25 0.050 0.032 0.034 0.035 0.066
    R2 0.038 0.028 0.030 0.040 0.037
    下载: 导出CSV

    表  4  分布参数正交实验方案及仿真分析结果

    Table  4.   Distributed parameter orthogonal experiment scheme and simulation analysis results

    序号 θ1/(°) Δ1/μm N1 p/MPa Q/(L·s-1) μ
    1 45 750 8 7.68 0.136 3 0.003 8
    2 45 750 7 7.80 0.136 2 0.003 8
    3 90 1 000 9 7.88 0.130 4 0.003 7
    4 45 750 7 7.80 0.136 3 0.003 8
    5 45 750 7 7.80 0.136 3 0.003 8
    6 90 500 9 8.10 0.133 8 0.003 6
    7 0 500 5 8.37 0.139 8 0.003 5
    8 45 750 6 8.17 0.138 0 0.003 6
    9 90 1000 5 7.90 0.136 5 0.003 7
    10 45 625 7 7.64 0.136 8 0.003 9
    11 22.5 750 7 8.56 0.139 9 0.003 5
    12 0 500 9 8.43 0.132 9 0.003 5
    13 0 1 000 5 8.07 0.137 5 0.003 6
    14 0 1 000 9 8.49 0.132 8 0.003 5
    15 45 750 7 7.80 0.136 3 0.003 8
    16 90 500 5 8.15 0.136 5 0.003 6
    17 45 750 7 7.80 0.136 3 0.003 8
    18 45 750 7 7.80 0.136 3 0.003 8
    19 45 875 7 7.80 0.136 3 0.003 8
    20 67.5 750 7 8.34 0.137 1 0.003 5
    下载: 导出CSV
  • [1] 郭长虹, 罗进, 权凌霄, 等. 十一柱塞航空泵转子系统轴径比对功重比的影响[J]. 机械科学与技术, 2022, 41(2): 213-219. doi: 10.13433/j.cnki.1003-8728.20200316

    GUO C H, LUO J, QUAN L X, et al. Influence of shaft diameter ratio of eleven plunger aviation pump rotor system on power to weight ratio[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(2): 213-219. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20200316
    [2] CHEN Y, ZHANG J H, XU B, et al. Multi-objective optimization of micron-scale surface textures for the cylinder/valve plate interface in axial piston pumps[J]. Tribology International, 2019, 138: 316-329. doi: 10.1016/j.triboint.2019.06.002
    [3] IVANTYSYNOVA M, BAKER J. Power loss in the lubricating gap between cylinder block and valve plate of swash plate type axial piston machines[J]. International Journal of Fluid Power, 2009, 10(2): 29-43. doi: 10.1080/14399776.2009.10780976
    [4] ZHAO J A, FU Y L, MA J M, et al. Review of cylinder block/valve plate interface in axial piston pumps: theoretical models, experimental investigations, and optimal design[J]. Chinese Journal of Aeronautics, 2021, 34(1): 111-134. doi: 10.1016/j.cja.2020.09.030
    [5] YE S G, TANG H S, REN Y, et al. Study on the load-carrying capacity of surface textured slipper bearing of axial piston pump[J]. Applied Mathematical Modelling, 2020, 77: 554-584. doi: 10.1016/j.apm.2019.07.058
    [6] WANG W, HE Y Y, ZHAO J, et al. Optimization of groove texture profile to improve hydrodynamic lubrication performance: theory and experiments[J]. Friction, 2020, 8(1): 83-94. doi: 10.1007/s40544-018-0247-1
    [7] 于英华, 王智群, 要金龙, 等. 机床滑动导轨微织构多目标优化设计[J]. 航空制造技术, 2022, 65(6): 36-44. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ202206003.htm

    YU Y H, WANG Z Q, YAO J L, et al. Multi-objective optimization design of micro-texture of sliding guideway in machine tool[J]. Aeronautical Manufacturing Technology, 2022, 65(6): 36-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ202206003.htm
    [8] 许长坤, 郭智威, 缪晨炜, 等. 活塞环表面织构密度对缸套-活塞环摩擦性能的影响[J]. 机械科学与技术, 2020, 39(10): 1489-1496. doi: 10.13433/j.cnki.1003-8728.20200133

    XU C K, GUO Z W, MIAO C W, et al. Effect of texture density in surface of piston ring on tribological performance of cylinder liner-piston ring[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1489-1496. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20200133
    [9] ATWAL J C, PANDEY R K. Film thickness and friction investigations in a fluid film thrust bearing employing a new conceived micro-texture on pads[J]. Journal of Tribology, 2021, 143(6): 061801. doi: 10.1115/1.4048500
    [10] DENG H S, HE S J, MAO F Y, et al. Effects of micropit depths on tribology performance of textured port plate pair[J]. Advances in Materials Science and Engineering, 2018, 2018: 9501708.
    [11] 毋少峰. 仿生非光滑表面配流副润滑承载机理数值模拟及摩擦磨损实验研究[D]. 秦皇岛: 燕山大学, 2017.

    WU S F. Simulation research on lubrication-bearing mechanism and experiment study on friction-wear for port pair with bionic non smooth surface[D]. Qinhuangdao: Yanshan University, 2017. (in Chinese)
    [12] 李朝阳, 刘志奇, 仉志强, 等. HMn58-2配流盘摩擦副表面激光加工微阵列对其摩擦磨损性能的影响[J]. 液压与气动, 2020(5): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-YYYQ202005008.htm

    LI C Y, LIU Z Q, ZHANG Z Q, et al. Influence of the laser processing micro array on the friction pair surface of HMn58-2 valve plate to its friction and wear performance[J]. Chinese Hydraulics & Pneumatics, 2020(5): 33-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYYQ202005008.htm
    [13] 张瑜, 陈国定, 王琳, 等. 空化与惯性效应耦合作用下的非对称表面微织构滑块承载力分析[J]. 西北工业大学学报, 2017, 35(12): 1026-1032. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201706014.htm

    ZHANG Y, CHEN G D, WANG L, et al. Analysis of bearing load-carrying capacity with asymmetric surface textures under coupling effects of cavitation and inertia effect[J]. Journal of Northwestern Polytechnical University, 2017, 35(12): 1026-1032. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201706014.htm
    [14] 许路. 高压高速轴向柱塞泵配流副润滑特性研究[D]. 北京: 北京理工大学, 2016.

    XU L. Study on the lubrication characteristics of the valve plate bearing in hydraulic axial piston pump[D]. Beijing: Beijing Institute of Technology, 2016. (in Chinese)
    [15] 甘海. 轴向柱塞泵配流副流场仿真及三角减振槽参数特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    GAN H. Simulation of flow filed for axial piston pump cylinder block-valve plate interface and parameters characteristic analysis of triangular relief groove[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese)
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  4
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-11
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回