留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用增减材复合制造技术的模具修复工艺研究

冯安平 林惠娴 张炜 陈剑明 廖文勇 王晖

冯安平, 林惠娴, 张炜, 陈剑明, 廖文勇, 王晖. 采用增减材复合制造技术的模具修复工艺研究[J]. 机械科学与技术, 2024, 43(7): 1244-1248. doi: 10.13433/j.cnki.1003-8728.20230028
引用本文: 冯安平, 林惠娴, 张炜, 陈剑明, 廖文勇, 王晖. 采用增减材复合制造技术的模具修复工艺研究[J]. 机械科学与技术, 2024, 43(7): 1244-1248. doi: 10.13433/j.cnki.1003-8728.20230028
FENG Anping, LIN Huixian, ZHANG Wei, CHEN Jianming, LIAO Wenyong, WANG Hui. Study on Die Repairing Technology Using Additive/Subtractive Hybrid Manufacturing[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1244-1248. doi: 10.13433/j.cnki.1003-8728.20230028
Citation: FENG Anping, LIN Huixian, ZHANG Wei, CHEN Jianming, LIAO Wenyong, WANG Hui. Study on Die Repairing Technology Using Additive/Subtractive Hybrid Manufacturing[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1244-1248. doi: 10.13433/j.cnki.1003-8728.20230028

采用增减材复合制造技术的模具修复工艺研究

doi: 10.13433/j.cnki.1003-8728.20230028
基金项目: 

广东省科技厅基础与应用基础研究基金项目 2020A1515110829

广东省普通高校工程技术中心项目 2021GCZX021

佛山市科技创新团队专项 1920001000093

广东省教育厅普通高校青年创新人才项目 2021KQNCX216

广东省教育厅普通高校青年创新人才项目 2021KQNCX217

中国职业技术教育协会重点项目 2021A042

一般项目 2021B59

2021年广东省教育厅继续教育质量提升工程项目 JXJYGC2021CY0163

详细信息
    作者简介:

    冯安平,副教授,学士,FAP76@163.com

    通讯作者:

    张炜,副教授,博士,wzhang_hfut@163.com

  • 中图分类号: TG156

Study on Die Repairing Technology Using Additive/Subtractive Hybrid Manufacturing

  • 摘要: 激光金属沉积增减材复合制造技术是实现模具等高附加值部件修复与再制造的理想候选工艺之一。为了提高模具修复的效率和精度,本文将增减材复合制造技术应用于模具修复领域,并且对修复工艺进行研究。首先根据具体使用工况和材料性能要求,确定了最佳模具修复参数,随后讨论了该模具修复工艺的应用条件和应用范围。实验结果表明: 利用本文提出工艺方案进行模具修复时可以实现修复区域无拼接痕迹,并且修复区域硬度提升7.4 HRC,能够有效提升模具的使用性能。
  • 图  1  激光增减材复合制造工艺流程示意图[2]

    Figure  1.  Schematic diagram of laser additive and subtractive composite manufacturing process

    图  2  基于激光增减材复合制造的模具修复工艺流程图

    Figure  2.  Flow chart of mold repair process based on laser additive and subtractive composite manufacturing

    图  3  实验对象及实验设备

    Figure  3.  Experimental objects and equipment

    图  4  参数优化实验结果

    Figure  4.  Experimental results of parameter optimization

    图  5  模具的修复过程

    Figure  5.  The repair process of the mold

    表  1  参数优化实验使用的具体参数值

    Table  1.   Specific parameter values used in parameter optimization experiments

    实验序号 激光功率/W 扫描速度/(mm·min-1) 送粉速率/(g·min-1)
    1 1 000 500 7
    2 1 000 600 7
    3 1 000 700 7
    4 1 000 500 9
    5 1 000 600 9
    6 1 000 700 9
    7 1 100 500 7
    8 1 100 600 7
    9 1 100 700 7
    10 1 100 500 9
    11 1 100 600 9
    12 1 100 700 9
    13 1 200 500 7
    14 1 200 600 7
    15 1 200 700 7
    16 1 200 500 9
    17 1 200 600 9
    18 1 200 700 9
    19 1 300 500 7
    20 1 300 600 7
    21 1 300 700 7
    22 1 300 500 9
    23 1 300 600 9
    24 1 300 700 9
    下载: 导出CSV
  • [1] 卢秉恒. 增材制造技术——现状与未来[J]. 中国机械工程, 2020, 31(1): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX202001008.htm

    LU B H. Additive manufacturing-current situation and future[J] China Mechanical Engineering, 2020, 31(1): 19-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX202001008.htm
    [2] 高孟秋, 赵宇辉, 赵吉宾, 等. 增减材复合制造技术研究现状与发展[J]. 真空, 2019, 56(6): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK201906014.htm

    GAO M Q, ZHAO Y H, ZHAO J B, et al. Research status and development of additive/subtractive hybrid manufacturing (A/SHM)[J]. Vacuum, 2019, 56(6): 68-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK201906014.htm
    [3] 李永超. 增减材复合制造技术的研究现状与关键问题[J]. 冶金管理, 2021(5): 109-110. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGL202105057.htm

    LI Y C. Research status and key problems of additive and subtractive hybrid manufacturing[J]. China Steel Focus, 2021(5): 109-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YJGL202105057.htm
    [4] 陈峰, 宋长辉, 杨永强, 等. 送粉式激光增材和铣削减材复合制造316L不锈钢的表面质量及力学性能[J]. 激光与光电子学进展, 2022, 59(1): 0114009. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202201030.htm

    CHEN F, SONG C H, YANG Y Q, et al. Surface quality and mechanical properties of 316L stainless steel manufactured by powder feeding laser additive and milling subtractive hybrid manufacturing[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0114009. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202201030.htm
    [5] 黄鑫. 钛合金增减材复合制造工艺研究[D]. 大连: 大连理工大学, 2017.

    HUANG X. The study on processing of additive/subtractive hybrid manufacturing for titanium alloy[D]. Dalian: Dalian University of Technology, 2017. (in Chinese)
    [6] 唐成铭, 赵吉宾, 田同同, 等. 基于激光选区熔化与高速切削的增减材复合制造系统开发[J]. 热加工工艺, 2022, 51(19): 118-122. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202219026.htm

    TANG C M, ZHAO J B, TIAN T T, et al. Development of a hybrid additive and subtractive manufacturing system based on selective laser melting and high speed machining[J]. Hot Working Technology, 2022, 51(19): 118-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202219026.htm
    [7] 邹伟, 黄锦涛, 程春, 等. 基于增材制造技术快速模具制造研究进展[J]. 材料导报, 2022, 36(19): 21020083. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202219023.htm

    ZOU W, HUANG J T, CHENG C, et al. Research progress of rapid tooling based on additive manufacturing[J]. Materials Reports, 2022, 36(19): 21020083. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202219023.htm
    [8] LU H F, XUE K N, XU X, et al. Effects of laser shock peening on microstructural evolution and wear property of laser hybrid remanufactured Ni25/Fe104 coating on H13 tool steel[J]. Journal of Materials Processing Technology, 2021, 291: 117016.
    [9] PHAM THI H N, 张晓伟, 王传琦, 等. H13钢表面TiC/Co基激光修复层的显微组织与力学性能[J]. 焊接学报, 2013, 34(11): 27-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201311007.htm

    PHAM THI H N, ZHANG X W, WANG C Q, et al. Microstructure and mechanical properties of TiC/Co composite coating by laser cladding on H13 steel surface[J]. Transactions of the China Welding Institution, 2013, 34(11): 27-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201311007.htm
    [10] LU J Z, XUE K N, LU H F, et al. Laser shock wave-induced wear property improvement and formation mechanism of laser cladding Ni25 coating on H13 tool steel[J]. Journal of Materials Processing Technology, 2021, 296: 117202.
    [11] ZHANG X C, LI W, CHEN X Y, et al. Evaluation of component repair using direct metal deposition from scanned data[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(9-12): 3335-3348.
    [12] ZHANG X C, PAN T, LI W, et al. Experimental characterization of a direct metal deposited cobalt-based alloy on tool steel for component repair[J]. JOM, 2019, 71(3): 946-955.
    [13] DEVINE R, CULLEN C, FOSTER J, et al. Remanufacture of hot forging dies by LMD-p using a cobalt based hard-facing alloy[J]. BHM Berg-Und Hüttenmännische Monatshefte, 2021, 166(5): 243-249.
    [14] 高小勇, 朱启茂, 王斌斌. 弹性模量线的选择对钢材屈服强度Rp0.2测量值的影响[J]. 理化检验-物理分册, 2020, 56(4): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJW202004003.htm

    GAO X Y, ZHU Q M, WANG B B. Effect of elastic modulus line selection on the yield strength Rp0.2 measured value of steels[J] Physical Testing and Chemical Analysis (Part A: Physical Testing), 2020, 56(4): 10-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LHJW202004003.htm
    [15] 李军伟. 用横梁平台测定规定非比例延伸强度Rp0.2的精度分析[J]. 热加工工艺, 2013, 42(2): 56-57. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201302016.htm

    LI J W. Determination precision analysis on proof strength of non-proportional extension 0.2% measured by crosshead[J]. Hot Working Technology, 2013, 42(2): 56-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201302016.htm
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  3
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-23
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回