留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AM-FM算子分解方法在滚动轴承故障诊断中的应用

黄武 郑近德 童靳于 潘海洋 刘庆运

黄武, 郑近德, 童靳于, 潘海洋, 刘庆运. AM-FM算子分解方法在滚动轴承故障诊断中的应用[J]. 机械科学与技术, 2024, 43(7): 1257-1265. doi: 10.13433/j.cnki.1003-8728.20230019
引用本文: 黄武, 郑近德, 童靳于, 潘海洋, 刘庆运. AM-FM算子分解方法在滚动轴承故障诊断中的应用[J]. 机械科学与技术, 2024, 43(7): 1257-1265. doi: 10.13433/j.cnki.1003-8728.20230019
HUANG Wu, ZHENG Jinde, TONG Jinyu, PAN Haiyang, LIU Qingyun. AM-FM Operator Decomposition Method and Its Application in Rolling Bearing Fault Diagnosis[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1257-1265. doi: 10.13433/j.cnki.1003-8728.20230019
Citation: HUANG Wu, ZHENG Jinde, TONG Jinyu, PAN Haiyang, LIU Qingyun. AM-FM Operator Decomposition Method and Its Application in Rolling Bearing Fault Diagnosis[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1257-1265. doi: 10.13433/j.cnki.1003-8728.20230019

AM-FM算子分解方法在滚动轴承故障诊断中的应用

doi: 10.13433/j.cnki.1003-8728.20230019
基金项目: 

国家自然科学基金项目 51975004

安徽省自然科学基金项目 2008085QE215

详细信息
    作者简介:

    黄武,硕士研究生,wuhwang1999@163.com

    通讯作者:

    郑近德,教授,硕士生导师,博士,jdzheng@ahut.edu.cn

  • 中图分类号: TN911.7; TH165.3

AM-FM Operator Decomposition Method and Its Application in Rolling Bearing Fault Diagnosis

  • 摘要: 基于算子的零空间追踪算法能够实现复杂信号的自适应分解,其关键在于信号模型的构造与求解。通过定义一种新的可完全消除调幅调频信号的调幅调频算子(AFO),进一步建立了一种基于AFO的信号分解新模型。为了提高参数对信号分解的鲁棒性,将非参数正则化(NPR)方法用于解决上述模型的约束优化问题,提出了一种基于NPR的自适应信号分解方法——NPR-AFO。论文将NPR-AFO方法引入到机械故障诊断中,并通过仿真和滚动轴承局部故障实测数据分析,与现有的其他分解方法进行了对比。结果表明: 所提方法不仅可以有效的提取故障特征,而且状态故障特征更加明显。
  • 图  1  NPR-AFO流程图

    Figure  1.  The flowchart of NPR-AFO

    图  2  S1(t)及其分量

    Figure  2.  S1(t) and its components

    图  3  5种信号分解方法分解的结果

    Figure  3.  The components of five signal decomposition methods

    图  4  寿命预测模拟实验台

    Figure  4.  Life prediction simulation test bench

    图  5  外圈故障的滚动轴承

    Figure  5.  Rolling bearing with outer ring failure

    图  6  外圈故障的滚动轴承信号的时域波形

    Figure  6.  Time domain waveform of rolling bearing signal with outer ring faults

    图  7  5种方法分解的分量

    Figure  7.  The components decomposed with the five methods

    图  8  分量的平方包络谱

    Figure  8.  The squared envelope spectrum of components

    表  1  5种方法分解的分量的正交性和信噪比指标的对比

    Table  1.   Comparison of component orthoganality and SNR indexes using the five methods

    方法 IO SNR1 SNR2
    NPR-AFO 0.006 4 16.793 9 17.045 3
    NS-SO 0.039 8 5.156 4 5.407 8
    VMD 0.075 8 -1.022 2 5.214 3
    EWT 0.234 2 5.671 7 5.386 8
    EEMD 0.137 8 1.071 4 1.678 3
    下载: 导出CSV

    表  2  4个分量的故障特征能量占比指标对比

    Table  2.   Comparison of fault characterization energy share metrics for the four components

    方法 ER1 ER2 ER3 ER4
    NPR-AFO 0.957 5 0.947 4 0.888 0 0.029 2
    NS-SO 0.158 5 0.090 1 0.010 9 0.561 9
    VMD 0.943 9 0.612 2 0.012 3 0.013 0
    EWT 0.353 2 0.112 3 0.026 2 3.6×10-4
    EEMD 0.553 0 0.341 9 0.096 8 0.049 5
    下载: 导出CSV
  • [1] YING W M, ZHENG J D, PAN H Y, et al. Permutation entropy-based improved uniform phase empirical mode decomposition for mechanical fault diagnosis[J]. Digital Signal Processing, 2021, 117: 103167. doi: 10.1016/j.dsp.2021.103167
    [2] YING W M, TONG J Y, DONG Z L, et al. Composite multivariate multi-scale permutation entropy and Laplacian score based fault diagnosis of rolling bearing[J]. Entropy, 2022, 24(2): 160. doi: 10.3390/e24020160
    [3] HUANG N E, WU Z H. A review on Hilbert-Huang transform: method and its applications to geophysical studies[J]. Reviews of Geophysics, 2008, 46(2): RG2006.
    [4] PENG S L, HWANG W L. Adaptive signal decomposition based on local narrow band signals[J]. IEEE Transactions on Signal Processing, 2008, 56(7): 2669-2676. doi: 10.1109/TSP.2008.917360
    [5] DAUBECHIES I, LU J F, WU H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 243-261. doi: 10.1016/j.acha.2010.08.002
    [6] LIU Z L, XU K L, LI D, et al. Automatic mode extraction of ultrasonic guided waves using synchrosqueezed wavelet transform[J]. Ultrasonics, 2019, 99: 105948. doi: 10.1016/j.ultras.2019.105948
    [7] HU Y, TU X T, LI F C. High-order synchrosqueezing wavelet transform and application to planetary gearbox fault diagnosis[J]. Mechanical Systems and Signal Processing, 2019, 131: 126-151. doi: 10.1016/j.ymssp.2019.05.050
    [8] 程军圣, 郑近德, 杨宇. 一种新的非平稳信号分析方法——局部特征尺度分解法[J]. 振动工程学报, 2012, 25(2): 215-220. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201202018.htm

    CHENG J S, ZHENG J D, YANG Y. A nonstationary signal analysis approach-the local characteristic-scale decomposition method[J]. Journal of Vibration Engineering, 2012, 25(2): 215-220. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201202018.htm
    [9] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. doi: 10.1109/TSP.2013.2288675
    [10] HUANG Y, LIN J H, LIU Z C, et al. A modified scale-space guiding variational mode decomposition for high-speed railway bearing fault diagnosis[J]. Journal of Sound and Vibration, 2019, 444: 216-234. doi: 10.1016/j.jsv.2018.12.033
    [11] GILLES J. Empirical wavelet transform[J]. IEEE Transac-tions on Signal Processing, 2013, 61(16): 3999-4010. doi: 10.1109/TSP.2013.2265222
    [12] 郑近德, 潘海洋, 程军圣, 等. 基于自适应经验傅里叶分解的机械故障诊断方法[J]. 机械工程学报, 2020, 56(9): 125-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202009015.htm

    ZHENG J D, PAN H Y, CHENG J S, et al. Adaptive empirical Fourier decomposition based mechanical fault diagnosis method[J]. Journal of Mechanical Engineering, 2020, 56(9): 125-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202009015.htm
    [13] PENG S L, HWANG W L. Null space pursuit: an operator-based approach to adaptive signal separation[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2475-2483. doi: 10.1109/TSP.2010.2041606
    [14] HU X Y, PENG S L, GUO B K, et al. Accurate AM-FM signal demodulation and separation using nonparametric regularization method[J]. Signal Processing, 2021, 186: 108131. doi: 10.1016/j.sigpro.2021.108131
    [15] HU X Y, PENG S L, HWANG W L. Operator based multicomponent AM-FM signal separation approach[C]//2011 IEEE International Workshop on Machine Learning for Signal Processing. Beijing: IEEE, 2011: 1-6.
    [16] HU X Y, PENG S L, HWANG W L. Multicomponent AM-FM signal separation and demodulation with null space pursuit[J]. Signal, Image and Video Processing, 2013, 7(6): 1093-1102. doi: 10.1007/s11760-012-0354-9
    [17] BIRGIN E G, MARTÍNEZ J M. Complexity and performance of an augmented Lagrangian algorithm[J]. Optimization Methods and Software, 2020, 35(5): 885-920. doi: 10.1080/10556788.2020.1746962
    [18] BIRGIN E G, MARTÍNEZ J M. Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization[J]. Computational Optimization and Applications, 2012, 51(3): 941-965. doi: 10.1007/s10589-011-9396-0
    [19] ANDREANI R, HAESER G, MITO L M, et al. On the best achievable quality of limit points of augmented Lagrangian schemes[J]. Numerical Algorithms, 2022, 90(2): 851-877. doi: 10.1007/s11075-021-01212-8
    [20] HUANG B H, MA C F. An iterative algorithm for the least Frobenius norm least squares solution of a class of generalized coupled Sylvester-transpose linear matrix equations[J]. Applied Mathematics and Computation, 2018, 328: 58-74. doi: 10.1016/j.amc.2018.01.020
    [21] AMIRI ROSHAN S, RAHMANI M. Consensus-based robust least-squares filter for multi-sensor systems[J]. International Journal of Adaptive Control and Signal Processing, 2022, 36(5): 1098-1115. doi: 10.1002/acs.3385
    [22] BOT R I, CSETNEK E R, NGUYEN D K. A proximal minimization algorithm for structured nonconvex and nonsmooth problems[J]. SIAM Journal on Optimization, 2019, 29(2): 1300-1328. doi: 10.1137/18M1190689
    [23] JIA Z H, HUANG J R, CAI X J. Proximal-like incremental aggregated gradient method with Bregman distance in weakly convex optimization problems[J]. Journal of Global Optimization, 2021, 80(4): 841-864. doi: 10.1007/s10898-021-01044-9
    [24] CARVALHO M L, IL'YASOV Y, SANTOS C A. Separating solutions of nonlinear problems using nonlinear generalized Rayleigh quotients[J]. Topological Methods in Nonlinear Analysis, 2021, 58(2): 453-480.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  3
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-08
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回