留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合向量叉积与跳点搜索策略的改进A*算法研究

胡士强 武美萍 施健 缪小进

胡士强, 武美萍, 施健, 缪小进. 融合向量叉积与跳点搜索策略的改进A*算法研究[J]. 机械科学与技术, 2024, 43(7): 1266-1276. doi: 10.13433/j.cnki.1003-8728.20230017
引用本文: 胡士强, 武美萍, 施健, 缪小进. 融合向量叉积与跳点搜索策略的改进A*算法研究[J]. 机械科学与技术, 2024, 43(7): 1266-1276. doi: 10.13433/j.cnki.1003-8728.20230017
HU Shiqiang, WU Meiping, SHI Jian, MIAO Xiaojin. Research on Improved A* Algorithm Integrating Vector Cross-product and Jump Point Search Strategy[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1266-1276. doi: 10.13433/j.cnki.1003-8728.20230017
Citation: HU Shiqiang, WU Meiping, SHI Jian, MIAO Xiaojin. Research on Improved A* Algorithm Integrating Vector Cross-product and Jump Point Search Strategy[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1266-1276. doi: 10.13433/j.cnki.1003-8728.20230017

融合向量叉积与跳点搜索策略的改进A*算法研究

doi: 10.13433/j.cnki.1003-8728.20230017
详细信息
    作者简介:

    胡士强,硕士研究生,hsq98526@163.com

    通讯作者:

    武美萍,教授,博士生导师,博士,wumeiping163@163.com

  • 中图分类号: TP242.6

Research on Improved A* Algorithm Integrating Vector Cross-product and Jump Point Search Strategy

  • 摘要: 为解决传统A*寻路算法在搜索过程中会产生大量冗余节点,导致算法整体搜索效率低,运算内存消耗大等问题,从A*算法的两个重要决策点出发,改进算法的代价评估函数与邻节点搜索策略,提出一种改进融合算法。首先,采用向量叉积与尺度平衡因子相结合的方法优化传统A*算法的启发函数,减少A*算法寻路过程中在最优路径周围产生的具有相同代价值的冗余节点,减少了对称路径的搜索;其次,融合跳点搜索(Jump point search, JPS)策略,通过逻辑判断实现路径的变步长跳跃搜索,避免了A*算法逐层搜索效率低的弊端。在不同尺寸的栅格地图中进行仿真分析,发现改进融合算法相比于传统A*算法,在路径长度基本相等的情况下,节点搜索数量约减少95%,且与传统JPS寻路算法相比,有效过滤了路径周围复杂形状障碍物产生的大量冗余跳点。最后,将改进融合算法应用于ROS移动机器人并进行对比实验以验证算法的可行性。实验结果表明:改进融合算法在获得高效安全的路径基础上,搜索效率相比于A*算法可提高约94%。
  • 图  1  栅格地图

    Figure  1.  Occupancy grid map

    图  2  不同邻域搜索示意图

    Figure  2.  Different neighbor domain search diagram

    图  3  不同搜索邻域下的搜索路径

    Figure  3.  Search paths in different search neighbor domains

    图  4  传统A*算法寻路过程

    Figure  4.  Traditional A* algorithm pathfinding process

    图  5  起点到目标点存在的对称路径

    Figure  5.  Symmetric paths exist from the start to the goal

    图  6  向量叉积的几何意义

    Figure  6.  Geometric meaning of vector cross product

    图  7  邻居修剪规则

    Figure  7.  Neighbor pruning rules

    图  8  跳点搜索过程

    Figure  8.  Jump point search process

    图  9  5种不同算法的50×50地图仿真结果

    Figure  9.  50×50 map simulation results of five different algorithms

    图  10  5种不同算法的100×100地图仿真结果

    Figure  10.  100×100 map simulation results of five different algorithms

    图  11  实验设备与实验场地

    Figure  11.  Experimental equipment and experimental site

    图  12  场景一下4种算法寻路效果

    Figure  12.  The pathfinding effects of four algorithms in scenario 1

    图  13  场景二下4种算法寻路效果

    Figure  13.  The pathfinding effects of four algorithms in scenario 2

    表  1  不同尺寸栅格地图中几种算法的搜索性能

    Table  1.   Search performance of several algorithms in occupancy grid maps of different sizes

    地图大小 算法 搜索时间/ms 搜索节点 路径长度/格
    A* 1.995 120 22.73
    改进A* 0.997 89 23.30
    20×20 JPS 0.979 23 22.73
    文献[11] 0.928 140 23.31
    融合 0.960 23 22.73
    A* 16.284 1 002 69.84
    改进A* 10.198 692 69.84
    50×50 JPS 6.491 113 69.84
    文献[11] 5.845 1 028 73.012
    融合 3.981 76 69.84
    A* 80.385 3 949 111.88
    改进A* 32.413 1 506 112.37
    75×75 JPS 38.895 206 111.88
    文献[11] 24.321 2 706 115.05
    融合 14.129 63 112.37
    A* 109.307 5 807 145.82
    改进A* 50.273 3 044 149.92
    100×100 JPS 64.539 425 145.82
    文献[11] 39.432 3 166 150.17
    融合 17.764 155 149.92
    下载: 导出CSV

    表  2  5种算法在不同场景下的寻路性能

    Table  2.   The pathfinding performances of five algorithms in different scenarios

    算法 场景一 场景二
    路径长度/m 搜索时间/ms 路径长度/m 搜索时间/ms
    传统A* 7.58 12.033 11.82 34.111
    改进A* 8.32 7.772 12.04 25.855
    JPS 7.68 0.912 11.82 3.498
    文献[11] 7.58 0.907 11.94 3.047
    融合 7.68 0.764 12.00 2.217
    下载: 导出CSV
  • [1] MAC T T, COPOT C, TRAN D T, et al. Heuristic approaches in robot path planning: a survey[J]. Robotics and Autonomous Systems, 2016, 86: 13-28. doi: 10.1016/j.robot.2016.08.001
    [2] DENG X, LI R F, ZHAO L J, et al. Multi-obstacle path planning and optimization for mobile robot[J]. Expert Systems with Applications, 2021, 183: 115445. doi: 10.1016/j.eswa.2021.115445
    [3] 史恩秀, 黄玉美, 朱从民, 等. 差速驱动轮式移动机器人路径规划新策略[J]. 中国机械工程, 2012, 23(23): 2805-2809. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201223007.htm

    SHI E X, HUANG Y M, ZHU C M, et al. A novel method of planning path for DDWMR[J]. China Mechanical Engineering, 2012, 23(23): 2805-2809. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201223007.htm
    [4] DIJKSTRA E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1(1): 269-271. doi: 10.1007/BF01386390
    [5] HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107. doi: 10.1109/TSSC.1968.300136
    [6] 周相坡, 周依尔, 徐立军, 等. 一种基于概率路线图的月球巡航车路径规划算法[J]. 空间控制技术与应用, 2020, 46(6): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-KJKZ202006006.htm

    ZHOU X P, ZHOU Y E, XU L J, et al. A path planning algorithm for lunar cover based on probabilistic roadmap[J]. Aerospace Control and Application, 2020, 46(6): 43-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJKZ202006006.htm
    [7] QI J, YANG H, SUN H X. MOD-RRT*: a sampling-based algorithm for robot path planning in dynamic environment[J]. IEEE Transactions on Industrial Electronics, 2021, 68(8): 7244-7251. doi: 10.1109/TIE.2020.2998740
    [8] MAC T T, COPOT C, TRAN D T, et al. A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization[J]. Applied Soft Computing, 2017, 59: 68-76. doi: 10.1016/j.asoc.2017.05.012
    [9] 冯豪博, 胡桥, 赵振轶. 基于精英族系遗传算法的AUV集群路径规划[J]. 系统工程与电子技术, 2022, 44(7): 2251-2262. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202207021.htm

    FENG H B, HU Q, ZHAO Z Y. AUV swarm path planning based on elite family genetic algorithm[J]. Systems Engineering and Electronics, 2022, 44(7): 2251-2262. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202207021.htm
    [10] MIAO C W, CHEN G Z, YAN C L, et al. Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm[J]. Computers & Industrial Engineering, 2021, 156: 107230.
    [11] 吴鹏, 桑成军, 陆忠华, 等. 基于改进A*算法的移动机器人路径规划研究[J]. 计算机工程与应用, 2019, 55(21): 227-233. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201921032.htm

    WU P, SANG C J, LU Z H, et al. Research on mobile robot path planning based on improved A* algorithm[J]. Computer Engineering and Applications, 2019, 55(21): 227-233. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201921032.htm
    [12] 孔继利, 张鹏坤, 刘晓平. 双向搜索机制的改进A*算法研究[J]. 计算机工程与应用, 2021, 57(8): 231-237. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202108032.htm

    KONG J L, ZHANG P K, LIU X P. Research on improved A* algorithm of bidirectional search mechanism[J]. Computer Engineering and Applications, 2021, 57(8): 231-237. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202108032.htm
    [13] 王洪斌, 郝策, 张平, 等. 基于A*算法和人工势场法的移动机器人路径规划[J]. 中国机械工程, 2019, 30(20): 2489-2496. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201920012.htm

    WANG H B, HAO C, ZHANG P, et al. Path planning of mobile robots based on A* algorithm and artificial potential field algorithm[J]. China Mechanical Engineering, 2019, 30(20): 2489-2496. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201920012.htm
    [14] HARABOR D, GRASTIEN A. The JPS pathfinding system[C]//5th Annual Symposium on Combinatorial Search. Niagara Falls, USA: AAAI, 2012: 207-208.
    [15] 赵晓, 王铮, 黄程侃, 等. 基于改进A*算法的移动机器人路径规划[J]. 机器人, 2018, 40(6): 903-910. https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201806016.htm

    ZHAO X, WANG Z, HUANG C K, et al. Mobile robot path planning based on an improved A* algorithm[J]. Robot, 2018, 40(6): 903-910. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201806016.htm
    [16] 马小陆, 梅宏. 双向跳点搜索算法的移动机器人全局路径规划研究[J]. 机械科学与技术, 2020, 39(10): 1624-1631. doi: 10.13433/j.cnki.1003-8728.20190342

    MA X L, MEI H. Research on bidirectional jump point search algorithm of global path planning for mobile robots[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1624-1631. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20190342
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-03
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回