留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半监督TS网络模型在齿轮故障诊断中的应用

陈保家 阮宇豪 陈法法 肖文荣 李公法 陶波

陈保家, 阮宇豪, 陈法法, 肖文荣, 李公法, 陶波. 半监督TS网络模型在齿轮故障诊断中的应用[J]. 机械科学与技术, 2024, 43(7): 1249-1256. doi: 10.13433/j.cnki.1003-8728.20230012
引用本文: 陈保家, 阮宇豪, 陈法法, 肖文荣, 李公法, 陶波. 半监督TS网络模型在齿轮故障诊断中的应用[J]. 机械科学与技术, 2024, 43(7): 1249-1256. doi: 10.13433/j.cnki.1003-8728.20230012
CHEN Baojia, RUAN Yuhao, CHEN Fafa, XIAO Wenrong, LI Gongfa, TAO Bo. Application of Semi-supervised Teacher-Student Network Model in Gear Fault Diagnosis[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1249-1256. doi: 10.13433/j.cnki.1003-8728.20230012
Citation: CHEN Baojia, RUAN Yuhao, CHEN Fafa, XIAO Wenrong, LI Gongfa, TAO Bo. Application of Semi-supervised Teacher-Student Network Model in Gear Fault Diagnosis[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1249-1256. doi: 10.13433/j.cnki.1003-8728.20230012

半监督TS网络模型在齿轮故障诊断中的应用

doi: 10.13433/j.cnki.1003-8728.20230012
基金项目: 

国家自然科学基金项目 51975324

机械传动国家重点实验室开放基金项目 SKLMT-MSKFKT-202020

水电机械设备设计与维护湖北省重点实验室(三峡大学)开放基金项目 2020KJX02

水电机械设备设计与维护湖北省重点实验室(三峡大学)开放基金项目 2021KJX02

水电机械设备设计与维护湖北省重点实验室(三峡大学)开放基金项目 2021KJX13

武汉科技大学冶金装备及其控制教育部重点实验室开放基金项目 MECOMF2021B04

详细信息
    作者简介:

    陈保家,教授,博士生导师,博士,cbjia@163.com

    通讯作者:

    陈法法,教授,博士生导师,博士,chenfafa2005@126.com

  • 中图分类号: HT17

Application of Semi-supervised Teacher-Student Network Model in Gear Fault Diagnosis

  • 摘要: 为解决在工业大数据条件下,有标签样本少导致机械故障诊断准确率低的问题,提出了一种半监督神经网络模型。该方法采用协同训练的方式,从时域和频域两个维度训练教师网络(T),将无标签数据转化为高质量的伪标签数据。再利用转化后的伪标签数据训练学生网络(S),通过对数据进行评判和计分,避免网络过拟合。最后通过得分函数,对伪标签数据进行阶梯筛选成为有标签数据。齿轮故障诊断结果表明: TS网络在仅有少量有标签数据的情况下,故障分类准确率达90.31%,与其他半监督方法相比,准确率高出15%~20%。在信噪比(SNR)为5、0、-5的条件下,模型可以达到86.81%、78.00%、52.78%的诊断准确率。
  • 图  1  网络关系

    Figure  1.  Network relationships

    图  2  计分模块

    Figure  2.  Scoring module

    图  3  筛选模块

    Figure  3.  Filtering module

    图  4  模型训练流程图

    Figure  4.  Model training process

    图  5  实验台展示图

    Figure  5.  Experimental bench display diagram

    图  6  计分模块超参数

    Figure  6.  Scoring module hyperparameters

    图  7  筛选模块超参数

    Figure  7.  Filter module hyperparameters

    图  8  半监督方法准确率对比

    Figure  8.  Comparison of accuracy of semi supervised methods

    图  9  模型可视化

    Figure  9.  Model visualization

    表  1  网络超参数设置

    Table  1.   Network hyperparameter settings

    网络 T1 T2 S
    输入层 (1 024, 1) (512, 1) (1 024, 1)
    卷积层 (16, 8) (16, 8) (16, 8)
    池化层 4 4 4
    卷积层 (64, 4) (64, 4) (64, 4)
    池化层 2 2 2
    全连接层 64 64 128
    分类层 18 18 18
    下载: 导出CSV

    表  2  数据集划分

    Table  2.   Dataset division

    载荷 样本数
    有标签 无标签 测试集
    空载 30 300 240
    轻载 30 300 240
    中载 30 300 240
    下载: 导出CSV

    表  3  不同样本数准确率比较

    Table  3.   Comparison of accuracy for different sample numbers

    样本数 时域 频域 协同训练
    5 10.8% 9.2% 16.3%
    10 12.1% 10.4% 22.8%
    15 23.9% 12.3% 40.7%
    20 34.7% 17.8% 55.6%
    25 53.1% 33.8% 79.1%
    下载: 导出CSV

    表  4  计分模块超参数表

    Table  4.   Scoring module hyperparameters

    超参数 搜索范围
    准确率阈值A [0.6, 0.7, 0.8, 0.9]
    分类概率阈值P [0.5, 0.6, 0.7, 0.8, 0.9]
    下载: 导出CSV

    表  5  筛选模块超参数表

    Table  5.   Filter module hyperparameters

    超参数 阈值范围
    备选数据阈值S0 [5, 6, 7, 8, 9]
    有标签数据阈值S1 [15, 18, 21, 24]
    下载: 导出CSV

    表  6  TS网络与有监督学习方法准确率对比

    Table  6.   Comparison of accuracy between TS network and supervised learning method

    样本量 TS网络 CNN ResNet
    90 90.31% 69.83% 81.14%
    180 97.6% 88.06% 91.44%
    270 97.5% 95.53% 94.36%
    360 98.61% 97.92% 94.54%
    下载: 导出CSV

    表  7  半监督方法准确率表

    Table  7.   Accuracy of semi-supervised methods

    信噪比/dB TS网络 Noise-student Self-train FDD
    -5 52.78% 49.33% 38.38% 37.61%
    0 78.00% 68.81% 58.60% 60.14%
    5 86.81% 76.94% 71.90% 70.84%
    90.31% 74.81% 72.69% 71.32%
    下载: 导出CSV
  • [1] 李益兵, 黄定洪, 马建波, 等. 基于深度置信网络与信息融合的齿轮故障诊断方法[J]. 振动与冲击, 2021, 40(8): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202108008.htm

    LI Y B, HUANG D H, MA J B, et al. A gear fault diagnosis method based on deep belief network and information fusion[J]. Journal of Vibration and Shock, 2021, 40(8): 62-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202108008.htm
    [2] 吴春志, 吴守军, 冯辅周, 等. 一种具有强抗噪性的深度学习故障诊断模型[J]. 西安交通大学学报, 2021, 55(4): 61-68. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202104007.htm

    WU C Z, WU S J, FENG F Z, et al. A deep learning fault diagnosis model with strong anti-noise ability[J]. Journal of Xi'an Jiaotong University, 2021, 55(4): 61-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202104007.htm
    [3] AI Y T, GUAN J Y, FEI C W, et al. Fusion information entropy method of rolling bearing fault diagnosis based on n-dimensional characteristic parameter distance[J]. Mechanical Systems and Signal Processing, 2017, 88: 123-136. doi: 10.1016/j.ymssp.2016.11.019
    [4] LI X Y, LI J L, ZHAO C Y, et al. Gear pitting fault diagnosis with mixed operating conditions based on adaptive 1D separable convolution with residual connection[J]. Mechanical Systems and Signal Processing, 2020, 142: 106740. doi: 10.1016/j.ymssp.2020.106740
    [5] ZHAO R, YAN R Q, CHEN Z H, et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115: 213-237. doi: 10.1016/j.ymssp.2018.05.050
    [6] 陈仁祥, 黄鑫, 杨黎霞, 余伟等. 基于卷积神经网络和离散小波变换的滚动轴承故障诊断[J]. 振动工程学报, 2018, 31(5): 883-891.

    CHEN R X, HUANG X, YANG L X, et al. Rolling bearing fault identification based on convolution neural network and discrete wavelet transform[J]. Journal of Vibration Engineering, 2018, 31(5): 883-891. (in Chinese)
    [7] 陈保家, 陈学力, 沈保明, 公等. CNN-LSTM深度神经网络在滚动轴承故障诊断中的应用[J]. 西安交通大学学报, 2021, 55(6): 28-36.

    CHEN B J, CHEN X L, SHEN B M, et al. An application of convolution neural network and long short-term memory in rolling bearing fault diagnosis[J]. Journal of Xi'an Jiaotong University, 2021, 55(6): 28-36. (in Chinese)
    [8] TANHA J, SAMADI N, ABDI Y, et al. CPSSDS: Conformal prediction for semi-supervised classification on data streams[J]. Information Sciences, 2022, 584: 212-234. doi: 10.1016/j.ins.2021.10.068
    [9] ADAMS N. Semi-supervised learning[J]. Journal of the Royal Statistical Society: Series A (Statistics in Society), 2009, 172(2): 530.
    [10] 刘雅芬, 郑艺峰, 江铃燚, 等. 深度半监督学习中伪标签方法综述[J]. 计算机科学与探索, 2022, 16(6): 1279-1290. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTS202206004.htm

    LIU Y F, ZHENG Y F, JIANG L Y, et al. Survey on pseudo-labeling methods in deep semi-supervised learning[J]. Journal of Frontiers of Computer Science & Technology, 2022, 16(6): 1279-1290. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTS202206004.htm
    [11] XIE Q Z, LUONG M T, HOVY E, et al. Self-training with noisy student improves ImageNet classification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: IEEE, 2020: 10687-10698.
    [12] ZHANG L, YANG L, MA T W, et al. A self-training semi-supervised machine learning method for predictive mapping of soil classes with limited sample data[J]. Geoderma, 2021, 384: 114809. doi: 10.1016/j.geoderma.2020.114809
    [13] FAN C, LIU X Y, XUE P, et al. Statistical characteriza-tion of semi-supervised neural networks for fault detection and diagnosis of air handling units[J]. Energy and Buildings, 2021, 234: 110733. doi: 10.1016/j.enbuild.2021.110733
    [14] PHAM H, DAI Z H, XIE Q Z, et al. Meta pseudo labels[J/OL]. arXiv: 2003.10580, (2021-03-01). https://arxiv.org/abs/2003.10580.
    [15] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe Nevada: Curran Associates Inc., 2012: 1097-1105.
    [16] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
    [17] GU J X, WANG Z H, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377. doi: 10.1016/j.patcog.2017.10.013
    [18] 朱威, 屈景怡, 吴仁彪. 结合批归一化的直通卷积神经网络图像分类算法[J]. 计算机辅助设计与图形学学报, 2017, 29(9): 1650-1657. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201709008.htm

    ZHU W, QU J Y, WU R B. Straight convolutional neural networks algorithm based on batch normalization for image classification[J]. Journal of Computer-Aided Design & Computer Graphics, 2017, 29(9): 1650-1657. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201709008.htm
    [19] CHENG C, LI C P, HAN Y F, et al. A semi-supervised deep learning image caption model based on Pseudo Label and N-gram[J]. International Journal of Approximate Reasoning, 2021, 131: 93-107.
    [20] ASGHAR S, CHOI J, YOON D, et al. Spatial pseudo-labeling for semi-supervised facies classification[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107834.
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-18
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回