留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大行程推拉电磁驱动微定位平台的内环阻尼与迭代学习控制

刘昊 赖磊捷

刘昊, 赖磊捷. 大行程推拉电磁驱动微定位平台的内环阻尼与迭代学习控制[J]. 机械科学与技术, 2024, 43(7): 1238-1243. doi: 10.13433/j.cnki.1003-8728.20230008
引用本文: 刘昊, 赖磊捷. 大行程推拉电磁驱动微定位平台的内环阻尼与迭代学习控制[J]. 机械科学与技术, 2024, 43(7): 1238-1243. doi: 10.13433/j.cnki.1003-8728.20230008
LIU Hao, LAI Leijie. Inner Loop Damping and Iterative Learning Control of a Large Stroke Micro-positioning Stage Driven by Push-pull Electromagnetic Actuators[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1238-1243. doi: 10.13433/j.cnki.1003-8728.20230008
Citation: LIU Hao, LAI Leijie. Inner Loop Damping and Iterative Learning Control of a Large Stroke Micro-positioning Stage Driven by Push-pull Electromagnetic Actuators[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(7): 1238-1243. doi: 10.13433/j.cnki.1003-8728.20230008

大行程推拉电磁驱动微定位平台的内环阻尼与迭代学习控制

doi: 10.13433/j.cnki.1003-8728.20230008
基金项目: 

国家自然科学基金项目 51605275

上海自然科学基金项目 21ZR1426000

机械系统与振动国家重点实验室课题项目 MSV202210

详细信息
    作者简介:

    刘昊, 硕士研究生, 673571721@qq.com

    通讯作者:

    赖磊捷, 副教授, 硕士生导师, lailj@sues.edu.cn

  • 中图分类号: TP29

Inner Loop Damping and Iterative Learning Control of a Large Stroke Micro-positioning Stage Driven by Push-pull Electromagnetic Actuators

  • 摘要: 为了解决音圈电机驱动柔性微定位平台驱动力小和低阻尼谐振等问题, 本文采用两侧音圈电机的推拉模式来提升驱动力的大小, 并且利用内环阻尼控制器结合迭代学习控制方法来实现平台的精准控制。首先, 搭建了互补配置的双音圈电机驱动双平行四边形柔性机构的微定位平台。其次, 设计了内环阻尼速度反馈控制器。然后, 采用逆模型迭代学习控制方法来进一步消除周期性的干扰和误差。最后进行了跟踪实验。结果表明: 在跟踪1 Hz和2.5 Hz的正弦波时, 相比于PI控制, 最大误差分别减少74.6%和68.6%, 满足微定位平台精准控制的要求。
  • 图  1  微定位平台实验系统

    Figure  1.  The micro positioning platform experimental system

    图  2  双平行四杆柔性机构

    Figure  2.  The double parallelogram flexible mechanism

    图  3  定位系统控制回路

    Figure  3.  The positioning system control circuit

    图  4  阻尼控制器加入前后系统的伯德图

    Figure  4.  The bode diagram of system before and after adding damping controller

    图  5  阻尼控制环路P

    Figure  5.  Damping control loop P

    图  6  逆补偿迭代学习控制框图

    Figure  6.  The inverse compensation iterative learning control diagram

    图  7  PI对1 Hz和2.5 Hz正弦信号的跟踪效果

    Figure  7.  The tracking effect of PI on 1 Hz and 2.5 Hz sine signals

    图  8  含PI的迭代控制对1 Hz和2.5 Hz正弦信号的跟踪效果

    Figure  8.  The tracking effect of iterative control with PI on 1 Hz and 2.5 Hz sine signals

    图  9  含内环阻尼和PI的迭代学习控制对不同频率正弦波的最大跟踪误差收敛效果

    Figure  9.  The convergence effect of inverse model compensation iterative learning control with inner loop damping and PI on maximum tracking error of different frequency sine waves

  • [1] 莫喜先. 磁驱动纳米定位平台时滞控制方法及实验[D]. 上海: 上海交通大学, 2019.

    MO X X. Retarded control method and experiments on magnet-driven nanopositioning stage[D]. Shanghai: Shanghai Jiao Tong University, 2019. (in Chinese)
    [2] 贺云波, 曾志强, 张昌. 迭代学习在音圈电机轨迹跟踪中的应用研究[J]. 机械设计与制造, 2020(4): 258-261.

    HE Y B, ZENG Z Q, ZHANG C. Study on the application of iterative learning in the trajectory tracking of voice coil motor[J]. Machinery Design & Manufacture, 2020(4): 258-261. (in Chinese)
    [3] 王福超, 王昱棠, 田大鹏. 音圈快速反射镜的完全跟踪控制[J]. 光学精密工程, 2020, 28(9): 1997-2006.

    WANG F C, WANG Y T, TIAN D P. Perfect tracking control for fast-steering mirror driven by voice coil motor[J]. Optics and Precision Engineering, 2020, 28(9): 1997-2006. (in Chinese)
    [4] PARMAR G, BARTON K, AWTAR S. Large dynamic range nanopositioning using iterative learning control[J]. Precision Engineering, 2014, 38(1): 48-56. doi: 10.1016/j.precisioneng.2013.07.003
    [5] ITO S, TROPPMAIR S, LINDNER B, et al. Long-range fast nanopositioner using nonlinearities of hybrid reluctance actuator for energy efficiency[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 3051-3059. doi: 10.1109/TIE.2018.2842735
    [6] CAI K H, TIAN Y L, LIU X P, et al. Development and control methodologies for 2-DOF micro/nano positioning stage with high out-of-plane payload capacity[J]. Robotics and Computer-Integrated Manufacturing, 2019, 56: 95-105. doi: 10.1016/j.rcim.2018.08.007
    [7] OKYAY A, ERKORKMAZ K, KHAMESEE M B. Mechatronic design, actuator optimization, and control of a long stroke linear nano-positioner[J]. Precision Engineering, 2018, 52: 308-322. doi: 10.1016/j.precisioneng.2018.01.007
    [8] NIKOOIENEJAD N, ALIPOUR A, MAROUFI M, et al. Video-rate non-raster AFM imaging with cycloid trajectory[J]. IEEE Transactions on Control Systems Technology, 2020, 28(2): 436-447. doi: 10.1109/TCST.2018.2879939
    [9] 吴文鹏, 王一帆, 胡贞. 微纳操纵成像迭代学习前馈反馈控制研究[J]. 机械科学与技术, 2022, 41(3): 414-420. doi: 10.13433/j.cnki.1003-8728.20200360

    WU W P, WANG Y F, HU Z. Exploring a feedforward and feedback control method for iterative learning by micro-nano manipulative imaging system[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(3): 414-420. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20200360
    [10] 陈国真, 徐斯强, 刘品宽, 等. 大行程快速反射镜的结构设计及带宽特性[J]. 光学精密工程, 2020, 28(1): 90-101.

    CHEN G Z, XU S Q, LIU P K, et al. Structural design and bandwidth characteristic of a fast steering mirror with large travel range[J]. Optics and Precision Engineering, 2020, 28(1): 90-101. (in Chinese)
    [11] 戴一帆, 段纬然, 王贵林, 等. 音圈电机驱动的快刀伺服系统建模与性能分析[J]. 国防科技大学学报, 2008, 30(1): 78-82.

    DAI Y F, DUAN W R, WANG G L, et al. Study on modeling and performance of a fast tool servo system driven by voice coil motor[J]. Journal of National University of Defense Technology, 2008, 30(1): 78-82. (in Chinese)
    [12] ZHANG Z, YANG X D, YAN P. Large dynamic range tracking of an XY compliant nanomanipulator with cross-axis coupling reduction[J]. Mechanical Systems and Signal Processing, 2019, 117: 757-770. doi: 10.1016/j.ymssp.2018.08.014
    [13] XU Q S. New flexure parallel-kinematic micropositioning system with large workspace[J]. IEEE Transactions on Robotics, 2012, 28(2): 478-491. doi: 10.1109/TRO.2011.2173853
    [14] TIAN Y L, CAI K H, ZHANG D W, et al. Development of a XYZ scanner for home-made atomic force microscope based on FPAA control[J]. Mechanical Systems and Signal Processing, 2019, 131: 222-242. doi: 10.1016/j.ymssp.2019.05.057
    [15] KANG S, LEE M G, CHOI Y M. Six degrees-of- freedom direct-driven nanopositioning stage using crab-leg flexures[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(2): 513-525. doi: 10.1109/TMECH.2020.2972301
  • 加载中
图(9)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-19
  • 刊出日期:  2024-07-25

目录

    /

    返回文章
    返回