留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

材料挤出式3D打印制备功能梯度材料过渡距离研究

马硕 韩硕 王世杰 韩晓伟 王龙 段国林

马硕, 韩硕, 王世杰, 韩晓伟, 王龙, 段国林. 材料挤出式3D打印制备功能梯度材料过渡距离研究[J]. 机械科学与技术, 2024, 43(1): 81-89. doi: 10.13433/j.cnki.1003-8728.20220210
引用本文: 马硕, 韩硕, 王世杰, 韩晓伟, 王龙, 段国林. 材料挤出式3D打印制备功能梯度材料过渡距离研究[J]. 机械科学与技术, 2024, 43(1): 81-89. doi: 10.13433/j.cnki.1003-8728.20220210
MA Shuo, HAN Shuo, WANG Shijie, HAN Xiaowei, WANG Long, DUAN Guolin. Study on Transition Distance of Functionally Graded Materials Fabricated by Material Extrusion 3D Printing[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 81-89. doi: 10.13433/j.cnki.1003-8728.20220210
Citation: MA Shuo, HAN Shuo, WANG Shijie, HAN Xiaowei, WANG Long, DUAN Guolin. Study on Transition Distance of Functionally Graded Materials Fabricated by Material Extrusion 3D Printing[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 81-89. doi: 10.13433/j.cnki.1003-8728.20220210

材料挤出式3D打印制备功能梯度材料过渡距离研究

doi: 10.13433/j.cnki.1003-8728.20220210
基金项目: 

河北省中央引导地方科技发展项目 216Z1804G

详细信息
    作者简介:

    马硕, 硕士研究生, 1035576567@qq.com

    通讯作者:

    段国林, 教授, 博士生导师, glduan@hebut.edu.cn

  • 中图分类号: TG156

Study on Transition Distance of Functionally Graded Materials Fabricated by Material Extrusion 3D Printing

  • 摘要: 近年来随着3D打印技术的飞速发展,材料挤出成型工艺制备功能梯度材料成为研究热点。材料之间的过渡是影响最终成型质量的关键因素。目前, 国内外学者只研究了两种独立材料之间相互转变的过渡距离,对不同组分材料之间的转变研究较少。采用双料筒打印机研究了不同组分材料之间的过渡距离,并通过实验探究不同进给量对过渡距离的影响,在保证打印质量的前提下得到了过渡距离最小的进给量。以Visual Studio 2019为开发平台提出一种新的进料策略缩短过渡距离,在路径规划中对切片得到点的材料信息进行判断,对组分增大的材料根据变化值计算其进给量并输出生成新型G代码。最终,采用新型G代码进行打印实验,缩短了材料过渡距离得到了理想的材料过渡曲线。
  • 图  1  双料筒3D打印机及混料装置

    Figure  1.  Dual-cartridge 3D printer and mixing device

    图  2  过渡距离的周期性变化[10]

    Figure  2.  Periodic changes in transition distance[10]

    图  3  过渡距离

    Figure  3.  Transition distance

    图  4  偏移距离

    Figure  4.  Offset distance

    图  5  实际打印中引入偏移距离

    Figure  5.  Introduction of offset distances in actual printing

    图  6  体积流率Q与压强差ΔPn的拟合曲线

    Figure  6.  Fitted curve of volume flow rate Q versus pressure difference ΔPn

    图  7  各材料组分之间转变及材料组分分析

    Figure  7.  Transformation between material components and analysis of material components

    图  8  各材料组分之间的过渡距离和过渡时的材料转变率

    Figure  8.  Transition distance between material components and material transition rate at transition

    图  9  不同进给量的打印图片及材料组分分析

    Figure  9.  Analysis of printed images and material components at different feeds

    图  10  不同进给量下的过渡距离和过渡时材料组分转变率

    Figure  10.  Transition distance at different feeds and transition rates of material components during transition

    图  11  优化进料策略流程

    Figure  11.  Procedures for optimizing feed strategy

    图  12  优化G代码后不同材料组分之间过渡打印图及分析

    Figure  12.  Printed diagram and analysis of the transition between different material components after optimizing of the G-code

    图  13  采用新策略打印的过渡距离

    Figure  13.  Transition distance printed with the new strategy

    图  14  不同材料组分变化值的过渡距离

    Figure  14.  Transition distance for different material component change values

  • [1] LOH G H, PEI E J, HARRISON D, et al. An overview of functionally graded additive manufacturing[J]. Additive Manufacturing, 2018, 23: 34-44. doi: 10.1016/j.addma.2018.06.023
    [2] KIM H S, YANG Y Z, KOH J T, et al. Fabrication and characterization of functionally graded nano-micro porous titanium surface by anodizing[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009, 88B(2): 427-435. doi: 10.1002/jbm.b.31124
    [3] LI V C F, KUANG X, HAMEL C M, et al. Cellulose nanocrystals support material for 3D printing complexly shaped structures via multi-materials-multi-methods printing[J]. Additive Manufacturing, 2019, 28: 14-22. doi: 10.1016/j.addma.2019.04.013
    [4] SALEH B, JIANG J H, FATHI R, et al. 30 Years of functionally graded materials: an overview of manufacturing methods, Applications and Future Challenges[J]. Composites Part B: Engineering, 2020, 201: 108376. doi: 10.1016/j.compositesb.2020.108376
    [5] ZHANG C, CHEN F, HUANG Z F, et al. Additive manufacturing of functionally graded materials: a review[J]. Materials Science and Engineering: A, 2019, 764: 138209. doi: 10.1016/j.msea.2019.138209
    [6] 施建平, 杨继全, 王兴松. 多材料零件3D打印技术现状及趋势[J]. 机械设计与制造工程, 2017, 46(2): 11-17.

    SHI J P, YANG J Q, WANG X S. Status and trend of 3D printing technology for heterogeneous objects[J]. Machine Design and Manufacturing Engineering, 2017, 46(2): 11-17. (in Chinese)
    [7] ZHOU H M, WANG Z Y. Distance-field-based Layered Manufacturing of FGM Objects[J]. Annual International Conference on Advanced Material Engineering, 2016, 52(4): 694-699
    [8] XIAO X Y, JOSHI S. Automatic toolpath generation for heterogeneous objects manufactured by directed energy deposition additive manufacturing process[J]. Journal of Manufacturing Science and Engineering, 2018, 140(7): 071005. doi: 10.1115/1.4039491
    [9] OZBOLAT I T, KOC B. A continuous multi-material toolpath planning for tissue scaffolds with hollowed features[J]. Computer-Aided Design and Applications, 2011, 8(2): 237-247. doi: 10.3722/cadaps.2011.237-247
    [10] LI W B, ARMANI A, MARTIN A, et al. Extrusion-based additive manufacturing of functionally graded ceramics[J]. Journal of the European Ceramic Society, 2021, 41(3): 2049-2057. doi: 10.1016/j.jeurceramsoc.2020.10.029
    [11] PELZ J S, KU N, SHOULDERS W T, et al. Multi-material additive manufacturing of functionally graded carbide ceramics via active, in-line mixing[J]. Additive Manufacturing, 2021, 37: 101647. doi: 10.1016/j.addma.2020.101647
    [12] 宋正义. 复杂组分梯度仿生3D打印系统及其3D/4D打印应用研究[D]. 长春: 吉林大学, 2019.

    SONG Z Y. Research on Biomimetic 3D printing system towards complex composition gradient and its 3D/4D printing application[D]. Changchun: Jilin University, 2019. (in Chinese)
    [13] BRACKETT J, YAN Y Z, CAUTHEN D, et al. Characterizing material transitions in large-scale Additive Manufacturing[J]. Additive Manufacturing, 2021, 38: 101750. doi: 10.1016/j.addma.2020.101750
    [14] MULLER P, MOGNOL P, HASCOET J Y. Functionally graded material (FGM) parts: from design to the manufacturing simulation[C]//Proceedings of the ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. Nantes, France: ASME, 2012.
    [15] CHEN D X B. Extrusion bioprinting of scaffolds for tissue engineering applications[M]. Cham: Springer, 2018.
  • 加载中
图(14)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  16
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-03
  • 刊出日期:  2024-01-25

目录

    /

    返回文章
    返回