留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机器人曲面零件抛光粗糙度预测模型研究

韩天勇 陈满意 朱义虎 朱自文

韩天勇, 陈满意, 朱义虎, 朱自文. 机器人曲面零件抛光粗糙度预测模型研究[J]. 机械科学与技术, 2024, 43(1): 73-80. doi: 10.13433/j.cnki.1003-8728.20220201
引用本文: 韩天勇, 陈满意, 朱义虎, 朱自文. 机器人曲面零件抛光粗糙度预测模型研究[J]. 机械科学与技术, 2024, 43(1): 73-80. doi: 10.13433/j.cnki.1003-8728.20220201
HAN Tianyong, CHEN Manyi, ZHU Yihu, ZHU Ziwen. Research on Polishing Roughness Prediction Model of Robot Curved Surface Parts[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 73-80. doi: 10.13433/j.cnki.1003-8728.20220201
Citation: HAN Tianyong, CHEN Manyi, ZHU Yihu, ZHU Ziwen. Research on Polishing Roughness Prediction Model of Robot Curved Surface Parts[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 73-80. doi: 10.13433/j.cnki.1003-8728.20220201

机器人曲面零件抛光粗糙度预测模型研究

doi: 10.13433/j.cnki.1003-8728.20220201
详细信息
    作者简介:

    韩天勇, 硕士, 1847519915@qq.com

    通讯作者:

    陈满意, 教授, 硕士生导师, cmy121@163.com

  • 中图分类号: TP242

Research on Polishing Roughness Prediction Model of Robot Curved Surface Parts

  • 摘要: 为提高抛光后曲面零件的表面质量,应建立粗糙度模型选取合理工艺参数,因此本文提出一种基于支持向量机(SVM)的建模方法。通过对机器人抛光过程及抛光工艺参数的研究,将刀具转速、抛光力、行间距、机器人进给速度等作为输入量,粗糙度作为输出量。结合粒子群算法(PSO)与SVM建立曲面零件抛光粗糙度预测模型,并与回归分析方法作对比。试验结果表明: 回归分析方法的预测误差较大,而基于SVM建立的曲面零件抛光粗糙度预测模型与试验结果高度吻合,试验测量值与预测值间的平均相对误差为2.84%。最后,通过全局寻优获得最佳工艺参数组合,该模型为合理选择抛光工艺参数提供了依据。
  • 图  1  曲面上的刀触点

    Figure  1.  Knife contact point on Surface

    图  2  刀具与零件间接触力分析

    Figure  2.  Analysis of the contact force between the tool and the part

    图  3  刀具与零件接触区域

    Figure  3.  Contact area between the tool and the part

    图  4  机器人自动抛光系统

    Figure  4.  Robot automated polishing system

    图  5  插补过程示意图

    Figure  5.  Interpolation process diagram

    图  6  轨迹规划示意图

    Figure  6.  Trajectory planning diagram

    图  7  抛光工艺参数与粗糙度关系

    Figure  7.  Relationship between polishing process parameters and roughness

    图  8  基于PSO的SVM预测模型

    Figure  8.  Establishment of SVM prediction model based on PSO

    图  9  零件局部抛光效果图

    Figure  9.  Partial polishing effect of the part

    表  1  测试集试验数据

    Table  1.   Test set experimental data

    序号 刀具转速/(r·min-1) 抛光力/N 行距/mm 进给速度/(mm·s-1) Ra/μm
    1 4 000 6 0.5 6.24 0.561
    2 5 000 5 0.3 5.46 0.456
    3 6 000 4 0.6 4.68 0.614
    4 7 000 3 0.4 3.9 0.569
    5 8 000 2 0.2 3.12 0.495
    下载: 导出CSV

    表  2  训练集试验数据

    Table  2.   Training set experimental data

    序号 刀具转速/(r·min-1) 抛光力/N 行距/mm 进给速度/(mm·s-1) Ra/μm
    1 4 000 2 0.2 3.12 0.431
    2 4 000 3 0.5 3.9 0.478
    3 4 000 4 0.3 4.68 0.455
    4 4 000 5 0.4 5.46 0.611
    5 4 000 6 0.6 6.24 0.634
    6 5 000 2 0.3 6.24 0.635
    7 5 000 3 0.6 3.12 0.559
    8 5 000 4 0.4 3.9 0.388
    9 5 000 5 0.2 4.68 0.406
    10 5 000 6 0.5 5.46 0.548
    11 6 000 2 0.4 5.46 0.616
    12 6 000 3 0.2 6.24 0.407
    13 6 000 4 0.5 3.12 0.433
    14 6 000 5 0.3 3.9 0.459
    15 6 000 6 0.6 4.68 0.571
    16 7 000 2 0.5 4.68 0.649
    17 7 000 3 0.3 5.46 0.562
    18 7 000 4 0.6 6.24 0.58
    19 7 000 5 0.4 3.12 0.379
    20 7 000 6 0.2 3.9 0.402
    21 8 000 2 0.6 3.9 0.794
    22 8 000 3 0.4 4.68 0.592
    23 8 000 4 0.2 5.46 0.441
    24 8 000 5 0.5 6.24 0.649
    25 8 000 6 0.3 3.12 0.511
    下载: 导出CSV

    表  3  两种方法的预测精度对比

    Table  3.   Comparison of prediction accuracy between two methods

    试验序号 回归分析 PSO-SVM
    预测值/μm 相对误差/% 预测值/μm 相对误差/%
    1 0.553 1.43 0.528 5.88
    2 0.48 5.26 0.462 1.32
    3 0.601 2.11 0.621 1.14
    4 0.533 6.33 0.554 2.64
    5 0.43 13.13 0.511 3.23
    平均误差/% 5.65 2.84
    下载: 导出CSV

    表  4  抛光参数水平

    Table  4.   Polishing parameter levels

    抛光工艺参数 水平
    1 2 3 4
    刀具转速/(r·min-1) 5 000 6 000 7 000 8 000
    抛光力/N 2 3 4 5
    行距/mm 0.2 0.3 0.4 0.5
    进给速度/(mm·s-1) 3.12 3.9 4.68 5.46
    下载: 导出CSV
  • [1] 陈满意, 樊江龙, 林文访. 基于响应曲面法的曲面抛光工艺参数研究[J]. 数字制造科学, 2019, 17(2): 113-118.

    CHEN M Y, FAN J L, LIN W F. Investigation on optimization of polishing process based on response surface method[J]. Digital Manufacture Science, 2019, 17(2): 113-118. (in Chinese)
    [2] CHANG Z, JIA Q, YUAN X, et al. Optimization of the grinding process to improve the surface integrity of bearing raceways[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(9-12): 4243-4252. doi: 10.1007/s00170-017-0061-3
    [3] CHEN Z, SHI Y Y, LIN X J, et al. Analysis and optimization of process parameter intervals for surface quality in polishing Ti-6Al-4V blisk blade[J]. Results in Physics, 2019, 12: 870-877. doi: 10.1016/j.rinp.2018.12.056
    [4] 淮文博, 史耀耀, 唐虹, 等. 砂布轮抛光叶片表面粗糙度预测与参数优化[J]. 计算机集成制造系统, 2017, 23(12): 2708-2718.

    HUAI W B, SHI Y Y, TANG H, et al. Surface roughness prediction and processing parameters optimization in abrasive cloth wheel polishing process for blade[J]. Computer Integrated Manufacturing Systems, 2017, 23(12): 2708-2718. (in Chinese)
    [5] 朱正清, 陈志同. 钛合金TC4的超硬磨料柔性抛光轮数控抛光试验研究[J]. 航空制造技术, 2022, 65(4): 56-62.

    ZHU Z Q, CHEN Z T. Experiment on CNC polishing of titanium TC4 using flexible polishing wheel with superhard abrasive[J]. Aeronautical Manufacturing Technology, 2022, 65(4): 56-62. (in Chinese)
    [6] RAO R V, PAWAR P J. Grinding process parameter optimiza-tion using non-traditional optimization algorithms[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2010, 224(6): 887-898. doi: 10.1243/09544054JEM1782
    [7] ZHAO T, SHI Y Y, LIN X J, et al. Surface roughness prediction and parameters optimization in grinding and polishing process for IBR of aero-engine[J]. The International Journal of Advanced Manufacturing Technology, 2014, 74(5-8): 653-663. doi: 10.1007/s00170-014-6020-3
    [8] 刘海旭, 武庆东, 曹潇俊, 等. 基于响应曲面法的304不锈钢化学机械抛光工艺参数优化[J]. 金刚石与磨料磨具工程, 2021, 41(2): 89-95.

    LIU H X, WU Q D, CAO X J, et al. Prediction and optimization of process parameters in chemical mechanical polishing for 304 stainless steel based on response surface methodology[J]. Diamond & Abrasives Engineering, 2021, 41(2): 89-95. (in Chinese)
    [9] 周恒飞. 面向表面质量的自适应加工参数控制方法研究[D]. 南京: 南京航空航天大学, 2020.

    ZHOU H F. Research on adaptive control method of machining parameters for surface quality[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. (in Chinese)
    [10] 冯海涛. 机器人自动化拋光系统关键技术的研究[D]. 杭州: 浙江大学, 2015.

    FENG H T. Research on the key technologies of robotic automatic polishing system[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
    [11] 黄嘉沛, 颜廷培, 丁宁, 等. 基于LibSVM激光透射焊接聚碳酸酯的工艺参数优化[J]. 焊接, 2021(3): 39-45.

    HUANG J P, YAN T P, DING N, et al. Parameters optimization of laser transmission welding polycarbonate based on LibSVM[J]. Welding & Joining, 2021(3): 39-45. (in Chinese)
    [12] 赵敬川, 赵吉宾, 李论, 等. 基于支持向量机的复杂曲面磨削去除量预测[J]. 组合机床与自动化加工技术, 2021(11): 58-61.

    ZHAO J C, ZHAO J B, LI L, et al. Prediction of complex surface grinding removal based on support vector machine[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(11): 58-61. (in Chinese)
    [13] 鲁娟, 张振坤, 吴智强, 等. 基于支持向量机的蠕墨铸铁表面粗糙度预测[J]. 表面技术, 2020, 49(2): 339-346.

    LU J, ZHANG Z K, WU Z Q, et al. Prediction of surface roughness for compacted graphite cast iron based on support vector machine[J]. Surface Technology, 2020, 49(2): 339-346. (in Chinese)
    [14] WANG W J, XU Z B. A heuristic training for support vector regression[J]. Neurocomputing, 2004, 61: 259-275.
    [15] 韩晓露, 王家忠, 弋景刚, 等. 基于Preston方程的反射杯抛磨工艺参数研究[J]. 机床与液压, 2018, 46(14): 12-16.

    HAN X L, WANG J Z, YI J G, et al. Study on polishing processing parameters of reflective cup based on Preston equation[J]. Machine Tool & Hydraulics, 2018, 46(14): 12-16. (in Chinese)
    [16] 樊江龙. 抛光机器人动力学建模与柔顺控制研究[D]. 武汉: 武汉理工大学, 2019.

    FAN J L. Research on dynamic modeling and compliance control for polishing robot[D]. Wuhan: Wuhan University of Technology, 2019. (in Chinese)
    [17] 梁子龙, 丁毓峰. 一种自由曲面抛光机器人轨迹规划方法[J]. 机械科学与技术, 2018, 37(10): 1489-1495. doi: 10.13433/j.cnki.1003-8728.20180071

    LIANG Z L, DING Y F. A trajectory planning method for free-form surface polishing robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(10): 1489-1495. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20180071
    [18] NAGATA F, HASE T, HAGA Z, et al. CAD/CAM-based Position/force controller for a mold polishing robot[J]. Mechatronics, 2007, 17(4-5): 207-216.
    [19] 余剑武, 胡其丰, 文丞, 等. 基于支持向量机的电火花加工8418钢表面粗糙度预测模型[J]. 中国机械工程, 2018, 29(7): 771-774.

    YU J W, HU Q F, WEN C, et al. Prediction model of surface roughness of 8418 steel by EDM based on SVM[J]. China Mechanical Engineering, 2018, 29(7): 771-774. (in Chinese)
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  25
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 刊出日期:  2024-01-25

目录

    /

    返回文章
    返回