留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型3D负泊松比多孔材料胞元的弹性性能研究

邓先溥 班宝旺 郄彦辉

邓先溥, 班宝旺, 郄彦辉. 新型3D负泊松比多孔材料胞元的弹性性能研究[J]. 机械科学与技术, 2024, 43(1): 173-179. doi: 10.13433/j.cnki.1003-8728.20220194
引用本文: 邓先溥, 班宝旺, 郄彦辉. 新型3D负泊松比多孔材料胞元的弹性性能研究[J]. 机械科学与技术, 2024, 43(1): 173-179. doi: 10.13433/j.cnki.1003-8728.20220194
DENG Xianpu, BAN Baowang, QIE Yanhui. Study on Elastic Properties of Novel 3D Cellular Materials with Negative Poisson's Ratio[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 173-179. doi: 10.13433/j.cnki.1003-8728.20220194
Citation: DENG Xianpu, BAN Baowang, QIE Yanhui. Study on Elastic Properties of Novel 3D Cellular Materials with Negative Poisson's Ratio[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 173-179. doi: 10.13433/j.cnki.1003-8728.20220194

新型3D负泊松比多孔材料胞元的弹性性能研究

doi: 10.13433/j.cnki.1003-8728.20220194
基金项目: 

河北省高等学校自然科学计划 ZD2018016

河北省质量技术监督局科技计划 2018ZD13

河北省质量技术监督局科技计划 2020ZC26

河北省特种设备监督检验研究院科技计划 HBTJ2021CY003

详细信息
    作者简介:

    邓先溥, 硕士研究生, hegongdadxp@163.com

    通讯作者:

    郄彦辉, 副教授, 硕士生导师, qieyanhui@126.com

  • 中图分类号: TB122

Study on Elastic Properties of Novel 3D Cellular Materials with Negative Poisson's Ratio

  • 摘要: 空间负泊松比多孔材料优异的多向能量吸收和体积变化可调特性, 使其在航空航天和军工设备等领域具有广阔的应用前景。论文设计了一种正交各向同性的新型空间负泊松比多孔材料的胞元结构(REC胞元), 并对其进行了增强设计。利用有限元仿真方法研究了胞元z向单轴压缩时的弹性力学行为, 详细分析了几何参数对胞元无量纲弹性模量和泊松比的影响, 并利用一组3D打印胞元试样的压缩试验对仿真结果进行了验证。所得结果可以为负泊松比多孔材料的功能设计和增强提供依据。
  • 图  1  新型空间负泊松比胞元和7种增强胞元

    Figure  1.  Novel spatial negative poisson′s ratio cell and 7 kinds of enhanced cells

    图  2  胞元xyz-REC投影面几何参数示意图

    Figure  2.  Schematic diagram of geometric parameters of xyz-REC cell projection surface

    图  3  Lυzx的影响

    Figure  3.  Effect of L on the υzx

    图  4  Lυzy的影响

    Figure  4.  Effect of L on the υzy

    图  5  LE*/E的影响

    Figure  5.  Effect of L on the E*/E

    图  6  b对于υzx的影响

    Figure  6.  Effect of b on the υzx

    图  7  b对于υzy的影响

    Figure  7.  Effect of b on the υzy

    图  8  bE*/E的影响

    Figure  8.  Effect of b on the E*/E

    图  9  αυzx的影响

    Figure  9.  Effect of α on the υzx

    图  10  αυzy的影响

    Figure  10.  Effect of α on the υzy

    图  11  αE*/E的影响

    Figure  11.  Effect of α on the E*/E

    图  12  βυzx的影响

    Figure  12.  Effect of β on the υzx

    图  13  βυzy的影响

    Figure  13.  Effect of β on the υzy

    图  14  βE*/E的影响

    Figure  14.  Effect of β on the E*/E

    图  15  胞元υzx对比

    Figure  15.  Comparison of each cell υzx

    图  16  胞元υzy对比

    Figure  16.  Comparison of each cell υzy

    图  17  试件示例及实验图

    Figure  17.  Example of specimen and experimental diagram

    图  18  实验和有限元υzx比较

    Figure  18.  Comparison of υzx between experimental results and FEM results

    图  19  实验和有限元υzy比较

    Figure  19.  Comparison of υzy between experimental results and FEM results

    图  20  实验和有限元E*/E比较

    Figure  20.  Comparison of E*/E between experimental results and FEM results

  • [1] WANG Z G. Recent advances in novel metallic honeycomb structure[J]. Composites Part B: Engineering, 2019, 166: 731-741. doi: 10.1016/j.compositesb.2019.02.011
    [2] 王显会, 师晨光, 周云波, 等. 车辆底部防护蜂窝夹层结构抗冲击性能分析[J]. 北京理工大学学报, 2016, 36(11): 1122-1126.

    WANG X H, SHI C G, ZHOU Y B, et al. Impact resistance analysis of honeycomb sandwich structure for the vehicle bottom protection[J]. Transactions of Beijing Institute of Technology, 2016, 36(11): 1122-1126. (in Chinese)
    [3] 沈振峰, 张新春, 白江畔, 等. 负泊松比内凹环形蜂窝结构的冲击响应特性研究[J]. 振动与冲击, 2020, 39(18): 89-95.

    SHEN Z F, ZHANG X C, BAI J P, et al. Dynamic response characteristics of re-entrant circular honeycombs with negative Poisson's ratio[J]. Journal of Vibration and Shock, 2020, 39(18): 89-95. (in Chinese)
    [4] 魏路路, 余强, 赵轩, 等. 内凹-反手性蜂窝结构的面内动态压溃性能研究[J]. 振动与冲击, 2021, 40(4): 261-269.

    WEI L L, YU Q, ZHAO X, et al. In-plane dynamic crushing characteristics of re-entrant anti-trichiral honeycomb[J]. Journal of Vibration and Shock, 2021, 40(4): 261-269. (in Chinese)
    [5] ZADPOOR A A. Mechanical performance of additively manufactured meta-biomaterials[J]. Acta Biomaterialia, 2019, 85: 41-59. doi: 10.1016/j.actbio.2018.12.038
    [6] 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3): 656-687.

    REN X, ZHANG X Y, XIE Y M. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656-687. (in Chinese)
    [7] REN X, DAS R, TRAN P, et al. Auxetic metamaterials and structures: a review[J]. Smart Materials and Structures, 2018, 27(2): 023001. doi: 10.1088/1361-665X/aaa61c
    [8] GIBSON L J, ASHBY M F, SCHAJER G S, et al. The mechanics of two-dimensional cellular materials[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1982, 382(1782): 25-42.
    [9] LAKES R. Foam structures with a negative Poisson's ratio[J]. Science, 1987, 235(4792): 1038-1040.
    [10] SHOKRI RAD M, PRAWOTO Y, AHMAD Z. Analytical solution and finite element approach to the 3D re-entrant structures of auxetic materials[J]. Mechanics of Materials, 2014, 74: 76-87.
    [11] CARNEIRO V H, RAWSON S D, PUGA H, et al. Additive manufacturing assisted investment casting: A low-cost method to fabricate periodic metallic cellular lattices[J]. Additive Manufacturing, 2020, 33: 101085.
    [12] LI C, SHEN H S, WANG H. Postbuckling behavior of sandwich plates with functionally graded auxetic 3D lattice core[J]. Composite Structures, 2020, 237: 111894.
    [13] YANG L, HARRYSSON O, WEST H, et al. Compressive properties of Ti-6Al-4V auxetic mesh structures made by electron beam melting[J]. Acta Materialia, 2012, 60(8): 3370-3379.
    [14] GAO Q, WANG L M, ZHOU Z, et al. Theoretical, numerical and experimental analysis of three-dimensional double-V honeycomb[J]. Materials & Design, 2018, 139: 380-391.
    [15] YANG N, DENG Y, MAO Z F, et al. Cross-like lattices with tailorable mechanical properties[J]. Materials Letters, 2020, 281: 128617.
    [16] WANG Q S, LI Z H, ZHANG Y, et al. Ultra-low density architectured metamaterial with superior mechanical properties and energy absorption capability[J]. Composites Part B: Engineering, 2020, 202: 108379.
    [17] BEHARIC A, RODRIGUEZ EGUI R, YANG L. Drop-weight impact characteristics of additively manufactured sandwich structures with different cellular designs[J]. Materials & Design, 2018, 145: 122-134.
    [18] QI D X, ZHANG P, WU W W, et al. Innovative 3D chiral metamaterials under large deformation: theoretical and experimental analysis[J]. International Journal of Solids and Structures, 2020, 202: 787-797.
  • 加载中
图(20)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  22
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-24
  • 刊出日期:  2024-01-25

目录

    /

    返回文章
    返回