留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑多种失效模式耦合的复合材料损伤分析

何易周 张凝 尹硕辉

何易周, 张凝, 尹硕辉. 考虑多种失效模式耦合的复合材料损伤分析[J]. 机械科学与技术, 2024, 43(1): 166-172. doi: 10.13433/j.cnki.1003-8728.20220192
引用本文: 何易周, 张凝, 尹硕辉. 考虑多种失效模式耦合的复合材料损伤分析[J]. 机械科学与技术, 2024, 43(1): 166-172. doi: 10.13433/j.cnki.1003-8728.20220192
HE Yizhou, ZHANG Ning, YIN Shuohui. Damage Analysis of Composites by Coupling Multiple Failure Mode[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 166-172. doi: 10.13433/j.cnki.1003-8728.20220192
Citation: HE Yizhou, ZHANG Ning, YIN Shuohui. Damage Analysis of Composites by Coupling Multiple Failure Mode[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 166-172. doi: 10.13433/j.cnki.1003-8728.20220192

考虑多种失效模式耦合的复合材料损伤分析

doi: 10.13433/j.cnki.1003-8728.20220192
基金项目: 

湖南省教育厅优秀青年项目 20B565

详细信息
    作者简介:

    何易周, 硕士研究生, 396445851@qq.com

    通讯作者:

    尹硕辉, 副教授, 博士, yinsh2016@163.com

  • 中图分类号: TB332

Damage Analysis of Composites by Coupling Multiple Failure Mode

  • 摘要: 复合材料的损伤失效形式是多样的, 其损伤失效形式包括层合板损伤、胶体裂纹扩展和界面脱黏。为了探讨层合板损伤、胶体裂纹扩展、界面脱黏3种损伤失效之间的内在联系, 先利用ABAQUS/Explicit软件建立混合型弯曲(MMB)断裂有限元模型, 通过数值仿真结果与实验结果的比较, 从而证明MMB模型的准确性。然后结合Hashin失效准则、扩展有限元法(XFEM)和内聚力模型(CZM)来研究3种失效模式的内在联系。结果表明: 层合板损伤不仅可以影响界面脱黏失效发生时间, 同时也能影响胶体中裂纹扩展路径, 为复合材料损伤问题数值分析提供了一定的参考。
  • 图  1  双线性CZM张力位移关系

    Figure  1.  Bilinear CZM traction displacement relationship

    图  2  MMB几何模型

    Figure  2.  MMB geometric model

    图  3  有限元网格模型

    Figure  3.  Finite element mesh model

    图  4  位移-载荷曲线图

    Figure  4.  Displacement-load curve

    图  5  忽略黏性层厚度MMB有限元模型

    Figure  5.  MMB finite element model ignoring viscous layer thickness

    图  6  界面脱黏失效裂纹扩展

    Figure  6.  Interface viscous separation failure crack growth

    图  7  层合板损伤失效-界面黏性剥离失效耦合失效裂纹扩展

    Figure  7.  Laminate damage failure and interface viscous stripping failure Coupling failure crack propagation

    图  8  复合材料层合板损伤

    Figure  8.  Damage of composite laminates

    图  9  位移-载荷曲线图

    Figure  9.  Displacement-load curve

    图  10  有胶体厚度MMB有限元单元模型

    Figure  10.  Finite element model of MMB with colloid thickness

    图  11  胶体扩展路径

    Figure  11.  Colloid expansion path

    图  12  位移载荷曲线图

    Figure  12.  Displacement load curve

    图  13  界面脱黏-胶体裂纹扩展

    Figure  13.  Interface viscous separation and colloid crack growth

    图  14  界面脱黏-胶体裂纹扩展-层合板损伤

    Figure  14.  Interface viscous separation, colloid crack growth and laminate damage

    表  1  AS4/PEEK材料属性

    Table  1.   AS4/PEEK material properties

    参数 数值
    层内 E11 122.7 GPa
    E22=E33 10.1 GPa
    G12=G13 5.5 GPa
    G23 3.7 GPa
    v12=v13 0.25
    v23 0.45
     
    层间 K 106 N/mm3
    σn0 80 MPa
    σs0 100 MPa
    GC 0.969 mJ/mm2
    GC 1.719 mJ/mm2
    ηBK 2.73
    下载: 导出CSV

    表  2  T300/1034-C材料属性

    Table  2.   Material properties of T300/1034-C

    参数 数值 参数 数值
    E11 146.757 GPa G23 3.790 GPa
    E22=E33 11.369 GPa v12=v13 0.3
    G12=G13 6.180 GPa v23 0.5
    XC 1 378 MPa XT 1 729 MPa
    YC 268 MPa YT 67 MPa
    ZT 67 MPa ZC 268 MPa
    Sxy 134 MPa Sxz 100 MPa
    Syz 100 MPa
    下载: 导出CSV

    表  3  AV138材料属性

    Table  3.   Material properties

    参数 数值 参数 数值
    E 4 890 MPa GIC 0.2 mJ/mm2
    σn0 39.45 MPa GC=GC 0.38 mJ/mm2
    σs0=σt0 30.2 MPa α 1
    v 0.35 K 106 N/mm3
    下载: 导出CSV
  • [1] NAGARAJ M H, CARRERA E, PETROLO M. Progressive damage analysis of composite laminates subjected to low-velocity impact using 2D layer-wise structural models[J]. International Journal of Non-Linear Mechanics, 2020, 127: 103591. doi: 10.1016/j.ijnonlinmec.2020.103591
    [2] 郑亦媚, 程吉, 王轩, 等. 褶皱层数对玻璃纤维层合板拉伸性能的影响[J]. 兵器材料科学与工程, 2021, 44(1): 104-110.

    ZHENG Y M, CHENG J, WANG X, et al. Effect of different wrinkled layers on tensile properties of glass fiber reinforced laminates[J]. Ordnance Material Science and Engineering, 2021, 44(1): 104-110. (in Chinese)
    [3] 张军, 贾宏. 内聚力模型的形状对胶接结构断裂过程的影响[J]. 力学学报, 2016, 48(5): 1088-1095.

    ZHANG J, JIA H. Influence of cohesive zone models shape on adhesively bonded joints[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1088-1095. (in Chinese)
    [4] RAFIEE R, HASHEMI-TAHERI M R. Failure analysis of a composite wind turbine blade at the adhesive joint of the trailing edge[J]. Engineering Failure Analysis, 2021, 121: 105148. doi: 10.1016/j.engfailanal.2020.105148
    [5] 龙文元, 季松, 汪正飞. 基于XFEM法的Ti/TiC叠层复合材料裂纹扩展有限元分析[J]. 特种铸造及有色合金, 2019, 39(9): 929-932.

    LONG W Y, JI S, WANG Z F. Finite element analysis of crack propagation of Ti/Tic laminated composites based on XFEM method[J]. Special Casting & Nonferrous Alloys, 2019, 39(9): 929-932. (in Chinese)
    [6] SANTOS T F, CAMPILHO R D S G. Numerical modelling of adhesively-bonded double-lap joints by the eXtended Finite Element Method[J]. Finite Elements in Analysis and Design, 2017, 133: 1-9. doi: 10.1016/j.finel.2017.05.005
    [7] 冯威, 徐绯, 由昊, 等. 扩展有限元方法与内聚力模型耦合下斜接修补复合材料的胶层损伤和缺陷[J]. 复合材料学报, 2018, 35(5): 1354-1360.

    FENG W, XU F, YOU H, et al. Adhesive damage and defect analysis of scarf-repaired composite by combining extended finite element method and cohesive zone model[J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1354-1360. (in Chinese)
    [8] 周伟, 张超, 甘淑媛. 基于XFEM-CZM耦合法的胶接接头裂纹扩展分析及强度预测[J]. 北京航空航天大学学报, 2020, 46(11): 2121-2130.

    ZHOU W, ZHANG C, GAN S Y. Crack propagation analysis and strength prediction of bonded joints based on XFEM-CZM coupling method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2121-2130. (in Chinese)
    [9] 赵文滔, 杨颜志, 王长焕, 等. 基于贝叶斯推断的复合材料层间内聚力模型参数反演[J]. 机械工程学报, 2022, 58(6): 110-118.

    ZHAO W T, YANG Y Z, WANG C H, et al. Parameter inversion for composite interlayer cohesive zone model based on Bayesian inference[J]. Journal of Mechanical Engineering, 2022, 58(6): 110-118. (in Chinese)
    [10] 底月兰, 王海斗, 董丽虹, 等. 扩展有限元法在裂纹扩展问题中的应用[J]. 材料导报A: 综述篇, 2017, 31(3): 70-74.

    DI Y L, WANG H D, DONG L H, et al. Application of the extended finite element method in crack propagation[J]. Materials Reports, 2017, 31(3): 70-74. (in Chinese)
    [11] 朱敏. 耐高温聚酰亚胺复合材料层合板连接力学性能分析[D]. 哈尔滨: 哈尔滨工程大学, 2015.

    ZHU M. Analysis of mechanics properties of bolted high temperature resistant polyimide composite laminates[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
    [12] CHANG F K, LESSARD L B. Damage tolerance of laminated composites containing an open hole and subjected to compressive loadings: Part Ⅰ-analysis[J]. Journal of Composite Materials, 1991, 25(1): 2-43. doi: 10.1177/002199839102500101
    [13] CAMANHO P P, MATTHEWS F L. A progressive damage model for mechanically fastened joints in composite laminates[J]. Journal of Composite Materials, 1999, 33(24): 2248-2280. doi: 10.1177/002199839903302402
    [14] TAN S C. A progressive failure model for composite laminates containing openings[J]. Journal of Composite Materials, 1991, 25(5): 556-577.
    [15] CAMANHO P P, DAVILA C G. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials[R]. Hampton: NASA Langley Research Center; 2002.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  60
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-18
  • 刊出日期:  2024-01-25

目录

    /

    返回文章
    返回