留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合Cokriging模型和单目标函数的随机模型修正

彭珍瑞 张雪萍 张亚峰

彭珍瑞, 张雪萍, 张亚峰. 结合Cokriging模型和单目标函数的随机模型修正[J]. 机械科学与技术, 2024, 43(1): 1-8. doi: 10.13433/j.cnki.1003-8728.20220191
引用本文: 彭珍瑞, 张雪萍, 张亚峰. 结合Cokriging模型和单目标函数的随机模型修正[J]. 机械科学与技术, 2024, 43(1): 1-8. doi: 10.13433/j.cnki.1003-8728.20220191
PENG Zhenrui, ZHANG Xueping, ZHANG Yafeng. Stochastic Model Updating Combining Cokriging Model and Single Objective Function[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 1-8. doi: 10.13433/j.cnki.1003-8728.20220191
Citation: PENG Zhenrui, ZHANG Xueping, ZHANG Yafeng. Stochastic Model Updating Combining Cokriging Model and Single Objective Function[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 1-8. doi: 10.13433/j.cnki.1003-8728.20220191

结合Cokriging模型和单目标函数的随机模型修正

doi: 10.13433/j.cnki.1003-8728.20220191
基金项目: 

国家自然科学基金项目 51768035

详细信息
    作者简介:

    彭珍瑞, 教授, 博士生导师, pzrui@163.com

  • 中图分类号: TB123; TH113.1

Stochastic Model Updating Combining Cokriging Model and Single Objective Function

  • 摘要: 将Cokriging代理模型技术和单目标函数进行结合,提出了一种随机模型修正方法。该方法将不确定性模型修正问题转化为较简单的待修正参数统计特征的修正问题,能够在保证模型修正精度的同时,有效缓解模型修正中由于分步修正和多目标修正造成的计算成本高的问题。首先,假设待修正参数和响应均服从高斯分布,采用拉丁超立方抽样获取训练集样本,构造满足精度要求的Cokriging模型以替代复杂的有限元模型参与迭代计算。然后,建立有限元模型计算响应统计特征与试验响应统计特征的加权残差目标函数,引入土狼优化算法最小化该单目标函数来得到待修正参数的统计特征。最后,通过二维和三维桁架结构验证了所提方法的可行性。
  • 图  1  模型修正流程图

    Figure  1.  Flow chart of model updating

    图  2  二维桁架模型

    Figure  2.  Two dimensional truss structure

    图  3  频率的预测值和真实值

    Figure  3.  Predicted value and true value of frequencies

    图  4  振型的预测值和真实值

    Figure  4.  Predicted value and true value of shapes

    图  5  频率对比图

    Figure  5.  Comparison of frequencies

    图  6  振型对比图

    Figure  6.  Comparison of shapes

    图  7  修正后频率的概率密度函数曲线

    Figure  7.  Updated frequency probability density function curve

    图  8  修正后参数响应的分布及置信椭圆

    Figure  8.  The distribution and confidence ellipse of the updated parameter response

    图  9  三维桁架模型

    Figure  9.  Three dimensional truss model

    图  10  第1阶频率的预测值和真实值

    Figure  10.  Predicted value and true value of first order frequencies

    图  11  频率对比图

    Figure  11.  Comparison of frequencies

    图  12  振型对比图

    Figure  12.  Comparison of shapes

    图  13  修正后频率的概率密度函数曲线

    Figure  13.  Updated frequency probability density function curve

    图  14  修正后参数响应的分布及置信椭圆

    Figure  14.  The distribution and confidence ellipse of the updated parameter response

    表  1  修正前后结构参数均值与标准差(二维桁架)

    Table  1.   The mean and standard deviation of structural parameters before and after updating(2D truss)

    修正参数 试验值 有限元值 修正前误差/% 多目标修正结果 单目标修正结果
    修正值 相对误差/% 修正值 相对误差/%
    E1均值/GPa 190 209 10 190.006 3.16×10-3 190.099 5.21×10-2
    E2均值/GPa 210 231 10 209.988 5.71×10-3 209.817 8.71×10-2
    d均值/(kg·m-3) 7 800 7 020 -10 7 799.936 8.21×10-4 7 801.184 1.52×10-2
    E1标准差 2.5 - - 2.622 4.88 2.581 3.24
    E2标准差 2.2 - - 2.103 4.41 2.225 1.14
    d标准差 25.0 - - 24.855 0.58 25.828 3.31
    下载: 导出CSV

    表  2  三维桁架模型属性

    Table  2.   Properties of 3D truss model

    总重 节长 跨长 主桁中心距 跨高比 桁高 泊松比 杆单元 节点
    54 kg 0.4 m 2.8 m 0.36 m 10 0.27 m 0.3 94个 28个
    下载: 导出CSV

    表  3  修正前后结构参数均值与标准差(三维桁架)

    Table  3.   The mean and standard deviation of structural parameters before and after updating(3D truss)

    修正参数 试验值 有限元值 修正前误差/% 多目标优化 单目标优化
    修正值 相对误差/% 修正值 相对误差/%
    E1均值/GPa 230 253 10 229.406 0.258 229.638 0.157
    E2均值/GPa 210 189 -10 210.910 0.433 210.320 0.152
    d均值/(kg·m-3) 7 300 8 030 10 7 305.604 7.68×10-2 7 300.361 4.95×10-3
    E1标准差 3.0 - - 2.949 1.70 2.904 3.20
    E2标准差 2.0 - - 2.089 4.45 2.003 0.15
    d标准差 20.0 - - 20.400 2.00 20.473 2.36
    下载: 导出CSV
  • [1] SIMOEN E, DE ROECK G, LOMBAERT G. Dealing with uncertainty in model updating for damage assessment: a review[J]. Mechanical Systems and Signal Processing, 2015, 56-57: 123-149. doi: 10.1016/j.ymssp.2014.11.001
    [2] MOTTERSHEAD J E, LINK M, FRISWELL M I. The sensitivity method in finite element model updating: a tutorial[J]. Mechanical Systems and Signal Processing, 2011, 25(7): 2275-2296. doi: 10.1016/j.ymssp.2010.10.012
    [3] 严海, 马锐磊, 梁跃, 等. 基于模态参数的水下航行器楔环结构有限元模型修正[J]. 鱼雷技术, 2016, 24(2): 87-93.

    YAN H, MA R L, LIANG Y, et al. Finite element model correction for wedged-ring connection structure of underwater vehicle based on modal parameters[J]. Torpedo Technology, 2016, 24(2): 87-93. (in Chinese)
    [4] 冷建成, 田洪旭, 徐爽, 等. 基于优化Kriging模型的平台结构动力学模型修正[J]. 振动与冲击, 2019, 38(18): 19-23.

    LENG J C, TIAN H X, XU S, et al. Dynamics model updating of an offshore platform structure based on optimized Kriging model[J]. Journal of Vibration and Shock, 2019, 38(18): 19-23. (in Chinese)
    [5] GOVERS Y, BÖSWALD M, FVLLEKRUG U, et al. Analysis of sources and quantification of uncertainty in experimental modal data[C]//International Conference on Noise & Vibration Engineering, Proceedings of ISMA2006. KU Leuven, Belgium, 2006: 4161-4173.
    [6] HUANG B, CHEN H. A new approach for stochastic model updating using the hybrid perturbation-Garlekin method[J]. Mechanical Systems and Signal Processing, 2019, 129: 1-19. doi: 10.1016/j.ymssp.2019.04.012
    [7] MOENS D. Uncertainties in structural dynamics[J]. Mechanical Systems and Signal Processing, 2012, 32: 1-4. doi: 10.1016/j.ymssp.2012.07.011
    [8] 宗周红, 高铭霖, 夏樟华. 基于健康监测的连续刚构桥有限元模型确认(Ⅱ)-不确定性分析与模型精度评价[J]. 土木工程学报, 2011, 44(3): 85-92.

    ZONG Z H, GAO M L, XIA Z H. Finite element model validation of the continuous rigid frame bridge based on structural health monitoring-Part Ⅱ: uncertainty analysis and evaluation of model accuracyⅡ[J]. China Civil Engineering Journal, 2011, 44(3): 85-92. (in Chinese)
    [9] HUA X G, NI Y Q, CHEN Z Q, et al. An improved perturbation method for stochastic finite element model updating[J]. International Journal for Numerical Methods in Engineering, 2008, 73(13): 1845-1864. doi: 10.1002/nme.2151
    [10] FANG S E, ZHANG Q H, REN W X. Parameter variability estimation using stochastic response surface model updating[J]. Mechanical Systems and Signal Processing, 2014, 49(1-2): 249-263. doi: 10.1016/j.ymssp.2014.04.017
    [11] 陈炉云, 杨念. 基于多层次权重系数的结构动力学模型修正[J]. 上海交通大学学报, 2017, 51(12): 1415-1421.

    CHEN L Y, YANG N. Model updating analysis of structural dynamic problem based on multi-level weight coefficients[J]. Journal of Shanghai Jiaotong University, 2017, 51(12): 1415-1421. (in Chinese)
    [12] 陈辉, 张衡, 李烨君, 等. 测量模态不确定的梁式结构随机有限元模型修正[J]. 振动工程学报, 2019, 32(4): 653-659.

    CHEN H, ZHANG H, LI Y J, et al. Stochastic finite element model updating of beam structure based on uncertain measurement modes[J]. Journal of Vibration Engineering, 2019, 32(4): 653-659. (in Chinese)
    [13] 秦仙蓉, 詹澎明, 赵书振, 等. 基于替代模型的岸桥随机有限元模型修正[J]. 振动与冲击, 2020, 39(1): 43-48.

    QIN X R, ZHAN P M, ZHAO S Z, et al. Updating of stochastic finite element model of a quayside container crane based on meta-model[J]. Journal of Vibration and Shock, 2020, 39(1): 43-48. (in Chinese)
    [14] 崔逊学. 多目标进化算法及其应用[M]. 北京: 国防工业出版社, 2006.

    CUI X X. Multiobjective evolutionary algorithms and their applications[M]. Beijing: National Defense Industry Press, 2006. (in Chinese)
    [15] LAURENT L, BOUCARD P A, SOULIER B. Generation of a cokriging metamodel using a multiparametric strategy[J]. Computational Mechanics, 2013, 51(2): 151-169.
    [16] PIEREZAN J, DOS SANTOS COELHO L. Coyote optimization algorithm: a new metaheuristic for global optimization problems[C]//Proceedings of 2018 IEEE Congress on Evolutionary Computation. Rio de Janeiro, Brazil: IEEE, 2018.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  74
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-17
  • 刊出日期:  2024-01-25

目录

    /

    返回文章
    返回