留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机铣削叶片抛磨技术研究现状及其发展趋势

李秀红 王嘉明 李文辉 王兴富

李秀红,王嘉明,李文辉, 等. 航空发动机铣削叶片抛磨技术研究现状及其发展趋势[J]. 机械科学与技术,2023,42(12):2132-2143 doi: 10.13433/j.cnki.1003-8728.20220180
引用本文: 李秀红,王嘉明,李文辉, 等. 航空发动机铣削叶片抛磨技术研究现状及其发展趋势[J]. 机械科学与技术,2023,42(12):2132-2143 doi: 10.13433/j.cnki.1003-8728.20220180
LI Xiuhong, WANG Jiaming, LI Wenhui, WANG Xingfu. State and Development in Polishing Technology of Aero-engine Milling Blade[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2132-2143. doi: 10.13433/j.cnki.1003-8728.20220180
Citation: LI Xiuhong, WANG Jiaming, LI Wenhui, WANG Xingfu. State and Development in Polishing Technology of Aero-engine Milling Blade[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2132-2143. doi: 10.13433/j.cnki.1003-8728.20220180

航空发动机铣削叶片抛磨技术研究现状及其发展趋势

doi: 10.13433/j.cnki.1003-8728.20220180
基金项目: 国家自然科学基金面上项目(51975399,51875389)
详细信息
    作者简介:

    李秀红(1972−),教授,博士生导师,博士,研究方向为精密零件表面光整加工技术,xhli7489@sina.com

  • 中图分类号: V263

State and Development in Polishing Technology of Aero-engine Milling Blade

  • 摘要: 叶片是航空发动机的核心部件,其苛刻的工况对其加工精度和表面完整性提出了更高要求。针对铣削叶片现有成性技术,阐述了叶片典型结构及抛磨前的表面状态,归纳了叶片抛磨技术关键共性难点。以表面完整性为评价指标,从手工抛磨、砂轮抛磨、砂带抛磨、磨粒流抛磨、柔性工具抛磨、磁力辅助抛磨、滚磨光整加工等方面介绍了航空发动机叶片抛磨的国内外研究进展,对比了各种抛磨技术的优缺点及适用范围。
  • 图  1  航空发动机工作叶片结构图

    Figure  1.  Structure of working blades for an aircraft engine

    图  2  叶片铣削加工后表面状态

    Figure  2.  Surface state of blades after milling processing

    图  3  强化工艺对叶片微观形貌的影响

    Figure  3.  The effect of strengthening technique on the microstructure of a blade

    图  4  砂轮抛磨原理图

    Figure  4.  The principles of grinding wheel polishing

    图  5  数控立式磨床加工后叶片表面情况[39]

    Figure  5.  The surface condition of the blade processed with a CNC vertical grinder[39]

    图  6  砂带抛磨原理图

    Figure  6.  The principles of abrasive belt polishing

    图  7  数控砂带磨床加工叶片效果对比[49]

    Figure  7.  Comparison of machining effects of blades processed with a CNC abrasive belt grinder[49]

    图  8  磨粒流加工原理图

    Figure  8.  The principles of abrasive flow processing

    图  9  磨粒流抛磨效果[57]

    Figure  9.  Griding effect of abrasive flow[57]

    图  10  新型柔性抛磨轮结构示意图[62]

    Figure  10.  The structure of a new flexible polishing wheel[62]

    图  11  柔性工具抛磨叶片

    Figure  11.  Polishing a blades with flexible tools

    图  12  超声波磁力研磨装置[71]

    Figure  12.  Ultrasonic wave magnetic grinding device[71]

    图  13  滚磨光整加工内涵

    Figure  13.  Connotation of mass finishing

    图  14  罗斯勒滚磨光整加工设备

    Figure  14.  Mass finishing equipment of Rossler Company

    图  15  滚磨光整加工叶片厚度变化情况[26]

    Figure  15.  The change of blade thickness after mass finishing[26]

    表  1  各种抛磨技术分析总结

    Table  1.   Analysis and summary of various polishing techniques

    抛磨技术优点缺点适用范围
    手工抛磨 叶片型面特定部位抛磨,实现局部靶向抛磨 抛磨效率及精度低、抛磨效果依靠工人水平、危害工人健康 各类型叶片
    砂轮抛磨 高效率、高精度、易于加工叶片前后缘、叶尖等区域 成本高、磨床利用率低、易出现磨烧、过抛等现象、易出现振动进而影响加工精度 风扇叶片、压气机静子叶片、涡轮叶片深窄槽、对裂纹敏感材料的涡轮、涡轮导向器叶片、涡轮盘环等
    砂带抛磨 柔性好、易扩展、加工精度高、磨床利用率高 成本高、加工小叶片难度较大、砂带磨损对加工效果影响较大、易出现削边、尖边、平头、偏头等缺陷 各类型叶片,加工小叶片受限
    磨粒流抛磨 对复杂曲面及其过渡转角处适应性强、抛磨效率高 夹具通用性差、设计难度高、进排气缘易过抛、加工均匀性差、叶片形状精度难以控制、难以引入残余压应力 叶轮、整体带冠涡轮盘、中小型薄壁叶片、高温叶片气膜孔
    柔性工具抛磨 柔性好、易扩展、加工精度高 成本高、抛磨效率低、加工难度大 可加工各尺寸大小的叶片,也可加工整体叶盘等
    磁力研磨技术 加工精度高、对复杂曲面适应性好 研磨压力难以控制、抛磨效率低、抛磨难度大、磁粒飞溅、难以引入残余压应力 尺寸较小的各类型叶片、小型整体叶盘等
    滚磨光整加工
    技术
    通用性高,加工范围广、滚抛磨块使用寿命长、抛磨效率高、成本低 进排气缘易过抛、叶片榫头转接处抛磨效果差、叶片形状精度难以控制 可加工各尺寸大小的叶片,也可加工整体叶盘等,加工范围广
    下载: 导出CSV
  • [1] 任众, 许开富, 韩飞. 涡轮叶型冷热态转换在液体火箭发动机中的应用[J]. 火箭推进, 2018, 44(2): 33-38. doi: 10.3969/j.issn.1672-9374.2018.02.006

    REN Z, XU K F, HAN F. Application of cold and hot state conversion of turbine blade profile in liquid rocket engine[J]. Journal of Rocket Propulsion, 2018, 44(2): 33-38. (in Chinese) doi: 10.3969/j.issn.1672-9374.2018.02.006
    [2] LIANG F, XIE Z F, XIA A G, et al. Aeroelastic simulation of the first 1. 5-stage aeroengine fan at rotating stall[J]. Chinese Journal of Aeronautics, 2020, 33(2): 529-549. doi: 10.1016/j.cja.2019.05.004
    [3] SHI D, WANG C, YANG X, et al. Failure assessment of the first stage high‐pressure turbine blades in an aero‐engine turbine[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(12): 2092-2106.
    [4] LIU D, SHI Y Y, LIN X J, et al. Polishing surface integrity of TC17 aeroengine blades[J]. Journal of Mechanical Science and Technology, 2020, 34(2): 689-699. doi: 10.1007/s12206-020-0114-7
    [5] 边国斌. 双轴静子叶片精密数控铣削及光整技术研究[D]. 大连: 大连理工大学, 2014.

    BIAN G B. Axis stator blade precision CNC milling and finishing technology[D]. Dalian: Dalian University of Technology, 2014. (in Chinese)
    [6] ZIDANE I F, SAQR K M, SWADENER G, et al. On the role of surface roughness in the aerodynamic performance and energy conversion of horizontal wind turbine blades: a review[J]. International Journal of Energy Research, 2016, 40(15): 2054-2077. doi: 10.1002/er.3580
    [7] GONG S G, CAO H Y, ZHANG J P, et al. Experimental study on the effect of blade surface roughness on aerodynamic performance[J]. IOP Conference Series:Earth and Environmental Science, 2021, 675(1): 012090. doi: 10.1088/1755-1315/675/1/012090
    [8] OMARI M A, MOUSA H M, AL-OQLA F M, et al. Enhancing the surface hardness and roughness of engine blades using the shot peening process[J]. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(8): 999-1004. doi: 10.1007/s12613-019-1818-5
    [9] LI X H, LI W H, YANG S Q, et al. Investigation of surface integrity and fatigue performance of TC4 titanium alloy in centrifugal barrel finishing[J]. Mechanika, 2017, 23(6): 916-922.
    [10] ZHANG J Y, YAO C F, TAN L, et al. Shot peening parameters optimization based on residual stress-induced deformation of large fan blades[J]. Thin-Walled Structures, 2021, 161: 107467. doi: 10.1016/j.tws.2021.107467
    [11] KHODABAKHSHI A, MASHREGHI A, SHAJARI Y, et al. Investigation of microstructure properties and quantitative metallography by different etchants in the service-exposed nickel-based superalloy turbine blade[J]. Transactions of the Indian Institute of Metals, 2018, 71(4): 849-859. doi: 10.1007/s12666-017-1217-4
    [12] 冯朝辉, 于娟, 郝敏, 等. 铝锂合金研究进展及发展趋势[J]. 航空材料学报, 2020, 40(1): 1-11. doi: 10.11868/j.issn.1005-5053.2019.000134

    FENG Z H, YU J, HAO M, et al. Research progress and development trend of aluminum-lithium alloys[J]. Journal of Aeronautical Materials, 2020, 40(1): 1-11. (in Chinese) doi: 10.11868/j.issn.1005-5053.2019.000134
    [13] DEEPANRAJ B, LAWRENCE P, SANKARANARAYANAN G. Theoretical analysis of gas turbine blade by finite element method[J]. Scientific World, 2011, 9(9): 29-33.
    [14] SUDHIR SASTRY Y B, KIROS B G, HAILU F, et al. Impact analysis of compressor rotor blades of an aircraft engine[J]. Frontiers of Structural and Civil Engineering, 2019, 13(3): 505-514. doi: 10.1007/s11709-018-0493-3
    [15] KORSHUNOV L G, KAIGORODOVA L I, CHERNENKO N L, et al. Tribological properties and structure of aluminum-lithium alloys[J]. Physics of Metals and Metallography, 2018, 119(12): 1236-1242. doi: 10.1134/S0031918X18120086
    [16] 刘维伟. 航空发动机叶片关键制造技术研究进展[J]. 航空制造技术, 2016(21): 50-56. doi: 10.16080/j.issn1671-833x.2016.21.050

    LIU W W. Research progress on key manufacturing technology of aeroengine blades[J]. Aeronautical Manufacturing Technology, 2016(21): 50-56. (in Chinese) doi: 10.16080/j.issn1671-833x.2016.21.050
    [17] 李海宁, 赵赟, 史耀耀, 等. 航空发动机风扇/压气机叶片制造关键技术[J]. 航空制造技术, 2013(16): 34-37. doi: 10.3969/j.issn.1671-833X.2013.16.003

    LI H N, ZHAO Y, SHI Y Y, et al. Key technology of NC machining for aeroengine fan/compressor blade[J]. Aeronautical Manufacturing Technology, 2013(16): 34-37. (in Chinese) doi: 10.3969/j.issn.1671-833X.2013.16.003
    [18] 李婷婷, 高晓斐, 刘晓晨. 航空发动机叶片加工过程检测方法研究[J]. 航空精密制造技术, 2020, 56(4): 37-41.

    LI T T, GAO X F, LIU X C. Research on the blade inspection method in aero-engine technological process[J]. Aviation Precision Manufacturing Technology, 2020, 56(4): 37-41. (in Chinese)
    [19] 蒋睿嵩, 汪文虎, 王增强, 等. 航空发动机涡轮叶片精密成形技术及其发展趋势[J]. 航空制造技术, 2016(21): 57-62. doi: 10.16080/j.issn1671-833x.2016.21.057

    JIANG R S, WANG W H, WANG Z Q, et al. Precision forming technology and its development trend of aeroengine turbine blade[J]. Aeronautical Manufacturing Technology, 2016(21): 57-62. (in Chinese) doi: 10.16080/j.issn1671-833x.2016.21.057
    [20] 关红, 崔树森, 汪大成. 高温合金叶片精密成形技术研究[J]. 材料科学与工艺, 2013, 21(4): 143-148. doi: 10.11951/j.issn.1005-0299.20130426

    GUAN H, CUI S S, WANG D C. The study of high temperature alloy vane precision forming technology[J]. Materials Science and Technology, 2013, 21(4): 143-148. (in Chinese) doi: 10.11951/j.issn.1005-0299.20130426
    [21] 王辉, 吴宝海, 李小强. 新一代商用航空发动机叶片的先进加工技术[J]. 航空制造技术, 2014(20): 26-31. doi: 10.3969/j.issn.1671-833X.2014.20.001

    WANG H, WU B H, LI X Q. Advanced machining technology of new generation commercial aeroengine blade[J]. Aeronautical Manufacturing Technology, 2014(20): 26-31. (in Chinese) doi: 10.3969/j.issn.1671-833X.2014.20.001
    [22] WANG R, ZHANG B, HU D, et al. Thermomechanical fatigue experiment and failure analysis on a nickel-based superalloy turbine blade[J]. Engineering Failure Analysis, 2019, 102: 35-45. doi: 10.1016/j.engfailanal.2019.04.023
    [23] 王增强. 先进航空发动机关键制造技术[J]. 航空制造技术, 2015(22): 34-38. doi: 10.16080/j.issn1671-833x.2015.22.034

    WANG Z Q. Key Manufacturing technology of advanced aeroengine[J]. Aeronautical Manufacturing Technology, 2015(22): 34-38. (in Chinese) doi: 10.16080/j.issn1671-833x.2015.22.034
    [24] 赵赟, 黄云, 常涛岐, 等. 机器人自适应砂带磨削镍基高温合金精铸叶片试验研究[J]. 航空制造技术, 2018, 61(15): 48-53. doi: 10.16080/j.issn1671-833x.2018.15.048

    ZHAO Y, HUANG Y, CHANG T Q, et al. Research on adaptive belt grinding nickel-based superalloy blades with robot[J]. Aeronautical Manufacturing Technology, 2018, 61(15): 48-53. (in Chinese) doi: 10.16080/j.issn1671-833x.2018.15.048
    [25] 梁巧云, 单坤, 李兆瑞, 等. 航发钛合金叶片金刚石砂带磨削的磨粒磨损研究[J]. 金刚石与磨料磨具工程, 2020, 40(4): 59-64. doi: 10.13394/j.cnki.jgszz.2020.4.0009

    LIANG Q Y, SHAN K, LI Z R, et al. Investigation of grain wear in diamond abrasive belt grinding titanium alloy blade for aeroengine[J]. Diamond & Abrasives Engineering, 2020, 40(4): 59-64. (in Chinese) doi: 10.13394/j.cnki.jgszz.2020.4.0009
    [26] 吕彤, 刘国涛. 无余量加工叶片滚磨工艺攻关及设备开发[C]//2012年中国(国际)光整加工技术及表面工程学术会议论文集. 无锡: 中国机械工程学会, 2012: 7-12.

    LYU T, LIU G T. Tackling key problems and equipment development of blade barrel grinding technology for no margin machining[C]//Proceedings of 2012 China (International) Finishing Technology and Surface Engineering Conference Proceedings. Wuxi: Chinese Mechanical Engineering Society, 2012: 7-12. (in Chinese)
    [27] 王欣, 徐鲲濠, 李臻熙, 等. 铣削和喷丸工艺对TC4钛合金残余应力和半高宽的影响[J]. 理化检验-物理分册, 2017, 53(7): 466-469.

    WANG X, XU K H, LI Z X, et al. Effect of milling and shot peening processes on residual stress and full wave at half maximum of TC4 titanium alloy[J]. Physical Testing and Chemical Analysis-Part A: Physical Testing, 2017, 53(7): 466-469. (in Chinese)
    [28] 王欣, 杨清, 宋颖刚, 等. TC17钛合金叶片制造过程的表面完整性研究[J]. 钛工业进展, 2017, 34(6): 42-46. doi: 10.13567/j.cnki.issn1009-9964.2017.06.009

    WANG X, YANG Q, SONG Y G, et al. Surface integrity research of TC17 titanium alloy blade in manufacturing process[J]. Titanium Industry Progress, 2017, 34(6): 42-46. (in Chinese) doi: 10.13567/j.cnki.issn1009-9964.2017.06.009
    [29] 陈艳娜. TC11钛合金冲击强化后的组织演变及疲劳性能[D]. 洛阳: 河南科技大学, 2020.

    CHEN Y N. Microstructure evolution and fatigue properties of TC11 titanium alloy after impact strengthening[D]. Luoyang: Henan University Of Science And Technology, 2020. (in Chinese)
    [30] 徐小虎. 压气机叶片机器人砂带磨抛加工关键技术研究[D]. 武汉: 华中科技大学, 2019.

    XU X H. Research on the key technology of robotic abrasive belt grinding of compressor blade[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese)
    [31] 梁秀权. 复杂曲面全数字式力控磨抛技术研究[D]. 武汉: 华中科技大学, 2019.

    LIANG X Q. Digital force controlled grinding and polishing technology for complex surfaces[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese)
    [32] AGARWAL S. On the mechanism and mechanics of wheel loading in grinding[J]. Journal of Manufacturing Processes, 2019, 41: 36-47. doi: 10.1016/j.jmapro.2019.03.009
    [33] NASKAR A, CHOUDHARY A, PAUL S. Wear mechanism in high-speed superabrasive grinding of titanium alloy and its effect on surface integrity[J]. Wear, 2020, 462-463: 203475. doi: 10.1016/j.wear.2020.203475
    [34] LI X, MENG F J, CUI W, et al. The CNC grinding of integrated impeller with electroplated CBN wheel[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(5-8): 1353-1361. doi: 10.1007/s00170-015-6904-x
    [35] DING W F, ZHAO B, ZHANG Q L, et al. Fabrication and wear characteristics of open-porous cBN abrasive wheels in grinding of Ti-6Al-4V alloys[J]. Wear, 2021, 477: 203786. doi: 10.1016/j.wear.2021.203786
    [36] 刘轩, 赵正彩, 傅玉灿, 等. 钛合金风扇叶片磨抛加工性能试验研究[J]. 航空制造技术, 2017(17): 84-90. doi: 10.16080/j.issn1671-833x.2017.17.084

    LIU X, ZHAO Z C, FU Y C, et al. Research on grinding and polishing performance of titanium alloy fan blade[J]. Aeronautical Manufacturing Technology, 2017(17): 84-90. (in Chinese) doi: 10.16080/j.issn1671-833x.2017.17.084
    [37] 马爽, 李勋, 崔伟, 等. GH4169叶片悬臂插磨表面完整性及参数优化研究[J]. 航空制造技术, 2016(18): 102-108. doi: 10.16080/j.issn1671-833x.2016.18.102

    MA S, LI X, CUI W, et al. Study on surface integrity and parameter optimization of GH4169 machined by cantilever plunge grinding[J]. Aeronautical Manufacturing Technology, 2016(18): 102-108. (in Chinese) doi: 10.16080/j.issn1671-833x.2016.18.102
    [38] MESHREKI M, SHI Z, ARRIEN F, et al. Analysis and optimization of robotized grinding of titanium high pressure compressor blades[C]//Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition. Phoenix: ASME, 2016.
    [39] 林嘉诚. 钛合金薄壁叶片叶尖磨削问题研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

    LIN J C. Research on tip grinding of thin-walled leaf blade of titanium alloy[D]. Harbin: Harbin Engineering University, 2018. (in Chinese)
    [40] 陈志同, 朱燏, 张云, 等. 整体叶盘超硬磨料砂轮数控磨削加工技术[J]. 航空制造技术, 2018, 61(19): 64-72. doi: 10.16080/j.issn1671-833x.2018.19.064

    CHEN Z T, ZHU Y, ZHANG Y, et al. CNC Grinding technology with super-abrasive grinding wheels for blisk[J]. Aeronautical Manufacturing Technology, 2018, 61(19): 64-72. (in Chinese) doi: 10.16080/j.issn1671-833x.2018.19.064
    [41] 淮文博, 唐虹, 史耀耀, 等. 砂布轮柔性抛光力的建模与参数优化[J]. 航空学报, 2016, 37(11): 3535-3545. doi: 10.7527/S1000-6893.2016.0009

    HUAI W B, TANG H, SHI Y Y, et al. Modelling and parameter optimization of flexible polishing force for abrasive cloth wheel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3535-3545. (in Chinese) doi: 10.7527/S1000-6893.2016.0009
    [42] WANG Y J, HUANG Y, CHEN Y X, et al. Model of an abrasive belt grinding surface removal contour and its application[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(9-12): 2113-2122. doi: 10.1007/s00170-015-7484-5
    [43] XU X H, CHEN W, ZHU D H, et al. Hybrid active/passive force control strategy for grinding marks suppression and profile accuracy enhancement in robotic belt grinding of turbine blade[J]. Robotics and Computer-Integrated Manufacturing, 2021, 67: 102047. doi: 10.1016/j.rcim.2020.102047
    [44] ZOU L, LIU X F, REN X, et al. Investigation of robotic abrasive belt grinding methods used for precision machining of aluminum blades[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(9-10): 3267-3278. doi: 10.1007/s00170-020-05632-z
    [45] HUANG Z, SONG R, WAN C B, et al. Trajectory planning of abrasive belt grinding for aero-engine blade profile[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(1-4): 605-614. doi: 10.1007/s00170-018-3187-z
    [46] 余汉林. 面向叶片机器人砂带磨抛加工的主被动力控制技术研究[D]. 武汉: 华中科技大学, 2018.

    YU H L. The research on robotic belt grinding of blade with combination of active and passive compliant force control technology[D]. Wuhan: Huazhong University of Science and Technology, 2018. (in Chinese)
    [47] 吕睿, 彭真, 吕远健, 等. 基于重定位的叶片机器人磨抛系统手眼标定算法[J]. 中国机械工程, 2022, 33(3): 339-347. doi: 10.3969/j.issn.1004-132X.2022.03.010

    LYU R, PENG Z, LYU Y J, et al. Relocalization-based hand-eye calibration algorithm for blade robotic grinding systems[J]. China Mechanical Engineering, 2022, 33(3): 339-347. (in Chinese) doi: 10.3969/j.issn.1004-132X.2022.03.010
    [48] WANG J T, ZHANG D H, WU B H, et al. Kinematic analysis and feedrate optimization in six-axis NC abrasive belt grinding of blades[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(1-4): 405-414. doi: 10.1007/s00170-015-6824-9
    [49] LI Z R, ZOU L, YIN J C, et al. Investigation of parametric control method and model in abrasive belt grinding of nickel-based superalloy blade[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(9-10): 3301-3311. doi: 10.1007/s00170-020-05607-0
    [50] XIAO G J, HUANG Y, YIN J C. An integrated polishing method for compressor blade surfaces[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(5-8): 1723-1733. doi: 10.1007/s00170-016-8891-y
    [51] DUAN J H, ZHANG Y M, SHI Y Y. Belt grinding process with force control system for blade of aero-engine[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2016, 230(5): 858-869. doi: 10.1177/0954405414563420
    [52] 龙永胜, 张丽, 王志杰, 等. 数控砂带抛光在中小航发叶片上的工程应用研究[J]. 装备维修技术, 2021(18): 135-137.

    LONG Y S, ZHANG L, WANG Z J, et al. Engineering application research of NC abrasive belt polishing on the blades of small and medium aero engines[J]. Equipment Technology, 2021(18): 135-137. (in Chinese)
    [53] 蔺小军, 杨艳, 吴广, 等. 面向叶片型面的五轴联动柔性数控砂带抛光技术[J]. 航空学报, 2015, 36(6): 2074-2082.

    LIN X J, YANG Y, WU G, et al. Flexible polishing technology of five-axis NC abrasive belt for blade surface[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6): 2074-2082. (in Chinese)
    [54] LI J Y, ZHANG H F, WEI L L, et al. Formation mechanism and quality control technology for abrasive flow precision polishing vortex: large eddy simulation[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(5-6): 2135-2150. doi: 10.1007/s00170-019-04232-w
    [55] CHIH-HUA W, WAI K C, MING W S Y, et al. Numerical and experimental investigation of abrasive flow machining of branching channels[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(9-10): 2945-2966. doi: 10.1007/s00170-020-05589-z
    [56] 郭应竹. 磨粒流加工在航空发动机制造中的应用[J]. 航空工艺技术, 1993(5): 28-32.

    GUO Y Z. Application of abrasive flow machining in aeroengine manufacturing industry[J]. Aeronautical Manufacturing Technology, 1993(5): 28-32. (in Chinese)
    [57] FU Y Z, GAO H, YAN Q S, et al. An efficient approach to improving the finishing properties of abrasive flow machining with the analyses of initial surface texture of workpiece[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(5-6): 2417-2432. doi: 10.1007/s00170-020-05173-5
    [58] ZHAO T, SHI Y Y, LIN X J, et al. Optimization of abrasive flow polishing process parameters for static blade ring based on response surface methodology[J]. Journal of Mechanical Science and Technology, 2016, 30(3): 1085-1093. doi: 10.1007/s12206-016-0213-7
    [59] 吴鸣宇. 磨粒流小压差均匀化抛光方法的研究[D]. 大连: 大连理工大学, 2016.

    WU M Y. The study of uniform polishing method of abrasive flow machinning with minimal differential pressure[D]. Dalian: Dalian University of Technology, 2016. (in Chinese)
    [60] 朱建辉. 航空叶轮的磨料流加工模拟分析及可行性研究[D]. 大连: 大连理工大学, 2013.

    ZHU J H. Simulating analysis and feasibility research of aero—impeller in abrasive flow machining[D]. Dalian: Dalian University of Technology, 2013. (in Chinese)
    [61] 孙冉. 复杂曲面磨粒流抛光过程和数值分析[D]. 长春: 长春理工大学, 2017.

    SUN R. The process and numerical anslysis of abrasive flow polishing complex curved surface[D]. Changchun: Changchun University of Science and Technology, 2017. (in Chinese)
    [62] ZHU Z Q, CHEN Z T, ZHANG Y. A novel polishing technology for leading and trailing edges of aero-engine blade[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(5-6): 1871-1880. doi: 10.1007/s00170-021-07574-6
    [63] XIAN C, SHI Y Y, LIN X J, et al. Roughness modeling for polishing an aero-engine blade with an abrasive cloth wheel[J]. Journal of Mechanical Science and Technology, 2020, 34(8): 3353-3361. doi: 10.1007/s12206-020-0728-9
    [64] HUAI W B, TANG H, SHI Y Y, et al. Prediction of surface roughness ratio of polishing blade of abrasive cloth wheel and optimization of processing parameters[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1-4): 699-708. doi: 10.1007/s00170-016-9397-3
    [65] LIN X J, WU D B, SHAN X F, et al. Flexible CNC polishing process and surface integrity of blades[J]. Journal of Mechanical Science and Technology, 2018, 32(6): 2735-2746. doi: 10.1007/s12206-018-0530-0
    [66] CHEN Z, SHI Y Y, LIN X J, et al. A profile-adaptive compliant polishing tool for aero-engine blade finishing process[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(9-12): 3825-3838. doi: 10.1007/s00170-019-03477-9
    [67] SHAO Q, LYU B H, YUAN J L, et al. Shear thickening polishing of the concave surface of high-temperature nickel-based alloy turbine blade[J]. Journal of Materials Research and Technology, 2021, 11: 72-84. doi: 10.1016/j.jmrt.2020.12.112
    [68] 陈登铃, 彭云峰, 曾鑫龙. 高转速气驱研抛装置设计及研抛特性研究[J]. 航空制造技术, 2019, 62(9): 53-58. doi: 10.16080/j.issn1671-833x.2019.09.053

    CHEN D L, PENG Y F, ZENG X L. Design and research on polishing characteristics of high speed pneumatic polishing device[J]. Aeronautical Manufacturing Technology, 2019, 62(9): 53-58. (in Chinese) doi: 10.16080/j.issn1671-833x.2019.09.053
    [69] 彭玉海, 侯红玲, 李志峰. 涡轮叶片的双头恒力抛光技术研究[J]. 机械设计与研究, 2015, 31(5): 113-115. doi: 10.13952/j.cnki.jofmdr.2015.0198

    PENG Y H, HOU H L, LI Z F. Research of two heads and constant force of blade polishing technology[J]. Machine Design & Research, 2015, 31(5): 113-115. (in Chinese) doi: 10.13952/j.cnki.jofmdr.2015.0198
    [70] BARMAN A, DAS M. Simulation and experimental investigation of finishing forces in magnetic field assisted finishing process[J]. Materials and Manufacturing Processes, 2018, 33(11): 1223-1232. doi: 10.1080/10426914.2018.1453157
    [71] 于克强, 周锟, 陈燕. 超声波辅助磁力研磨整体叶盘试验研究[J]. 电镀与精饰, 2020, 42(7): 42-46.

    YU K Q, ZHOU K, CHEN Y. Experimental study on blisk by ultrasonic vibration assisted MAF[J]. Plating & Finishing, 2020, 42(7): 42-46. (in Chinese)
    [72] 杜兆伟, 陈燕, 周锟, 等. 磁力研磨法对整体叶盘的抛光工艺研究[J]. 航空制造技术, 2015(20): 93-95. doi: 10.16080/j.issn1671-833x.2015.20.093

    DU Z W, CHEN Y, ZHOU K, et al. Study on blisk surface polishing by magnetic abrasive finishing[J]. Aeronautical Manufacturing Technology, 2015(20): 93-95. (in Chinese) doi: 10.16080/j.issn1671-833x.2015.20.093
    [73] LI W H, LI X H, YANG S Q, et al. A newly developed media for magnetic abrasive finishing process: material removal behavior and finishing performance[J]. Journal of Materials Processing Technology, 2018, 260: 20-29. doi: 10.1016/j.jmatprotec.2018.05.007
    [74] HAO Y P, YANG S Q, LI X H, et al. Analysis of contact force characteristics of vibratory finishing within pipe-cavity[J]. Granular Matter, 2021, 23(2): 32. doi: 10.1007/s10035-021-01089-3
    [75] 杨印权, 张亚双, 梁巧云. 滚磨光整技术在航空发动机产品制造中的应用研究[J]. 航空制造技术, 2016(11): 69-71. doi: 10.16080/j.issn1671-833x.2016.11.069

    YANG Y Q, ZHANG Y S, LIANG Q Y. Research on application of barrel finishing technology in manufacture of aeroengine[J]. Aeronautical Manufacturing Technology, 2016(11): 69-71. (in Chinese) doi: 10.16080/j.issn1671-833x.2016.11.069
    [76] 汪斌, 何坚, 余杰, 等. 高效光饰加工技术在航空发动机典型零件加工中的应用[J]. 金刚石与磨料磨具工程, 2018, 38(3): 75-80. doi: 10.13394/j.cnki.jgszz.2018.3.0015

    WANG B, HE J, YU J, et al. Application of high efficiency polishing technology in manufacturing aero-engine components[J]. Diamond & Abrasives Engineering, 2018, 38(3): 75-80. (in Chinese) doi: 10.13394/j.cnki.jgszz.2018.3.0015
    [77] 李秀红, 李文辉, 杨胜强, 等. 一种用于叶片表面加工的组合封闭型腔振动式滚磨光整加工装置及其方法: 中国, 201911003324. X[P]. 2020-02-28.

    LI X H, LI W H, YANG S Q, et al. Combined closed cavity vibration type rolling polishing finishing device and method for blade surface processing: CN, 201911003324. X[P]. 2020-02-28. (in Chinese)
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  53
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-24
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回