留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变厚度多孔梯度材料圆板的热后屈曲分析

李清禄 苗文帅 张靖华

李清禄,苗文帅,张靖华. 变厚度多孔梯度材料圆板的热后屈曲分析[J]. 机械科学与技术,2023,42(12):2118-2124 doi: 10.13433/j.cnki.1003-8728.20220179
引用本文: 李清禄,苗文帅,张靖华. 变厚度多孔梯度材料圆板的热后屈曲分析[J]. 机械科学与技术,2023,42(12):2118-2124 doi: 10.13433/j.cnki.1003-8728.20220179
LI Qinglu, MIAO Wenshuai, ZHANG Jinghua. Analysis of Thermal Post-buckling Behavior of Graded Porous Circular Plate with Variable Thickness[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2118-2124. doi: 10.13433/j.cnki.1003-8728.20220179
Citation: LI Qinglu, MIAO Wenshuai, ZHANG Jinghua. Analysis of Thermal Post-buckling Behavior of Graded Porous Circular Plate with Variable Thickness[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2118-2124. doi: 10.13433/j.cnki.1003-8728.20220179

变厚度多孔梯度材料圆板的热后屈曲分析

doi: 10.13433/j.cnki.1003-8728.20220179
基金项目: 国家自然科学基金项目(12062010,12362009)
详细信息
    作者简介:

    李清禄(1974−),副教授,硕士生导师,研究方向为复合材料结构力学,lqu2008@163.com

  • 中图分类号: TB330.1;O343.7

Analysis of Thermal Post-buckling Behavior of Graded Porous Circular Plate with Variable Thickness

  • 摘要: 为分析多孔梯度材料圆板在非均匀温度场中的热后屈曲响应,基于经典板理论和物理中面概念建立了梯度多孔材料圆板在热载荷作用下的控制微分方程,其中假设厚度变化沿半径为二次抛物线型且板在其厚度上具有对称和非对称的非均匀孔隙率分布。采用打靶法数值求解了问题的屈曲和后屈曲响应,给出了均匀升温和热传导下的梯度多孔非线性变厚度圆板后屈曲平衡路径。结果显示:变厚度系数、孔隙率系数、孔隙分布方式以及温度场对板的临界载荷和后屈曲平衡路径均有影响;在不同温度场中孔隙率系数越大,屈曲时的临界载荷越小;孔隙率对称分布下的临界载荷大于非对称情况下的。
  • 图  1  变厚度多孔圆板的示意图

    Figure  1.  Schematic diagram of variable thickness porous circular plate

    图  2  孔隙率沿截面厚度分布模式图

    Figure  2.  Porosity distribution pattern along the thickness of the section

    图  3  厚度变化系数下$ {W_{\max }} - \tau $的关系曲线

    Figure  3.  Relationship curves of $ \tau $ versus ${W_{\max }} $ for different η

    图  4  不同孔隙率下$ {W_{\max }} - \tau $的关系曲线($ \eta {\text{ = 0}}{\text{.5}} $

    Figure  4.  $\tau $ versus ${W_{\max }} $ for different porosity e0(η = 0.5)

    图  5  非均匀升温对$ {W_{\max }} - \tau $的影响($ {e_0} = 0.2,\eta {\text{ = 0}}{\text{.5}} $

    Figure  5.  The influence of non-uniform rise on ${W_{\max }} - \tau $

    图  6  不同孔隙率下$ {W_{\max }} - \tau $的关系曲线($ {T_{\text{r}}} = 1.5,\eta {\text{ = 0}}{\text{.5}} $

    Figure  6.  $\tau $ versus ${W_{\max }} $ for different porosity e0 (Tr = 1.5, η = 0.5)

    图  7  不同$ \eta $下Mode I板的屈曲构形图($ \tau {\text{ = 15}} $

    Figure  7.  Buckling configuration of Mode I plate under different η (τ = 15)

    图  8  不同$ \eta $下Mode II板的屈曲构形图($ \tau {\text{ = 15}} $

    Figure  8.  Buckling configuration of Mode II plate under different η (τ = 15)

    表  1  梯度多孔圆板的临界温度($\eta = 0.{\text{1}}$

    Table  1.   The critical temperature of $\Delta T_{\rm{cr}} $ porous plate (η=0.1)

    孔隙率系数
    $ {e_0} $
    均匀升温/K非均匀升温/K
    Mode IMode IIMode IMode II
    0.1162.59157.42132.35111.42
    0.2140.15128.35122.48101.36
    0.3133.57122.30113.3592.35
    0.4121.38107.54104.8784.24
    0.5110.41100.4697.2876.90
    下载: 导出CSV

    表  2  不同变厚度系数下多孔圆板的临界温度(${e_0} = 0.{\text{3}}$

    Table  2.   Critical temperature of porous circular plate with variable thickness coefficient(e0=0.3)

    变厚度系数
    $ \eta $
    均匀升温/K非均匀升温/K
    Mode IMode IIMode IMode II
    0.0127.14116.41107.8980.486
    0.2147.53139.66118.9388.721
    0.5160.45145.53136.16101.57
    1.0195.63179.12166.01123.84
    2.0269.64246.89228.81170.69
    下载: 导出CSV
  • [1] KOIZUMI M. The concept of FGM, ceramic transactions[J]. Functionally Gradient Materials, 1993, 34: 3-10.
    [2] CHEN Y, LI Q L. Thermal vibration analysis of functionally graded circular plates based on Levinson's third-order shear deformation theory[J]. Mechanics Based Design of Structures and Machines, 2021: 1-18,doi: 10.1080/15397734.2021.1991808.
    [3] 刘培生. 多孔材料引论[M]. 2版. 北京: 清华大学出版社, 2012.

    LIU P S. Introduction to porous materials[M]. 2nd ed. Beijing: Tsinghua University Press, 2012. (in Chinese)
    [4] YÜSUF Y Z, AKBAŞ Ş D. Buckling analysis of a fiber reinforced laminated composite plate with porosity[J]. Journal of Computational Applied Mechanics, 2019, 50(2): 375-380.
    [5] 周攀, 李淑娟, 杨磊鹏. 单液滴冲击多孔介质过程的数值模拟与试验[J]. 机械科学与技术, 2017, 36(6): 965-970.

    ZHOU P, LI S J, YANG L P. Process simulation and experiments of single droplet impactingon porous materials[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(6): 965-970. (in Chinese)
    [6] ZHAO C Y. Review on thermal transport in high porosity cellular metal foams with open cells[J]. International Journal of Heat and Mass Transfer, 2012, 55(13-14): 3618-3632. doi: 10.1016/j.ijheatmasstransfer.2012.03.017
    [7] WATTANASAKULPONG N, CHAIKITTIRATANA A, PORNPEERAKEAT S. Chebyshev collocation approach for vibration analysis of functionally graded porous beams based on third-order shear deformation theory[J]. Acta Mechanica Sinica, 2018, 34(6): 1124-1135. doi: 10.1007/s10409-018-0770-3
    [8] XUE Y Q, JIN G Y, MA X L, et al. Free vibration analysis of porous plates with porosity distributions in the thickness and in-plane directions using isogeometric approach[J]. International Journal of Mechanical Sciences, 2019, 152: 346-362. doi: 10.1016/j.ijmecsci.2019.01.004
    [9] SHE G L, LIU H B, KARAMI B. On resonance behavior of porous FG curved nanobeams[J]. Steel and Composite Structures, 2020, 36(2): 179-186.
    [10] 卢子兴, 郭宇. 金属泡沫材料力学行为的研究概述[J]. 北京航空航天大学学报, 2003, 29(11): 978-983.

    LU Z X, GUO Y. Brief review of studies on the mechanical behavior of metallic foams[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(11): 978-983. (in Chinese)
    [11] 梁永仁, 杨志懋, 丁秉钧. 金属多孔材料应用及制备的研究进展[J]. 稀有金属材料与工程, 2006, 35(S2): 30-34.

    LIANG Y R, YANG Z M, DING B J. Progress in the applications and preparations of porous Metals[J]. Rare Metal Materials and Engineering, 2006, 35(S2): 30-34. (in Chinese)
    [12] 杨保军, 奚正平, 汤慧萍, 等. 梯度多孔金属材料制备及应用的研究进展[J]. 粉末冶金工业, 2008, 18(2): 28-32.

    YANG B J, XI Z P, TANG H P, et al. Research progress in preparation and application of gradient-porous metal[J]. Powder Metallurgy Industry, 2008, 18(2): 28-32. (in Chinese)
    [13] 刘培生, 周茂奇. 多孔金属材料失效模式的数理分析[J]. 中国有色金属学报, 2021, 31(2): 384-400. doi: 10.11817/j.ysxb.1004.0609.2021-35920

    LIU P S, ZHOU M Q. Mathematical analysis of failure mode for porous metallic materials[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(2): 384-400. (in Chinese) doi: 10.11817/j.ysxb.1004.0609.2021-35920
    [14] 张海鸿, 王启, 王金海, 等. HF原位催化高气孔率晶须框架多孔莫来石的制备及强化机制研究[J]. 西北工业大学学报, 2021, 39(1): 208-215. doi: 10.3969/j.issn.1000-2758.2021.01.026

    ZHANG H H, WANG Q, WANG J H, et al. Preparation and strengthening mechanisms of in-situ HF catalyzed highly porous mullite with whisker frame structure[J]. Journal of Northwestern Polytechnical University, 2021, 39(1): 208-215. (in Chinese) doi: 10.3969/j.issn.1000-2758.2021.01.026
    [15] MAGNUCKI K, STASIEWICZ P. Elastic buckling of a porous beam[J]. Journal of Theoretical and Applied Mechanics, 2004, 42(4): 859-868.
    [16] SHAFIEI N, KAZEMI M. Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/micro-scale beams[J]. Aerospace Science and Technology, 2017, 66: 1-11. doi: 10.1016/j.ast.2017.02.019
    [17] MAGNUCKA-BLANDZI E. Axi-symmetrical deflection and buckling of circular porous-cellular plate[J]. Thin-Walled Structures, 2008, 46(3): 333-337. doi: 10.1016/j.tws.2007.06.006
    [18] REZAIEE-PAJAND M, KAMALI F. Exact solution for thermal−mechanical post-buckling of functionally graded micro-beams[J]. CEAS Aeronautical Journal, 2021, 12(1): 85-100. doi: 10.1007/s13272-020-00480-9
    [19] MA L S, WANG T J. Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings[J]. International Journal of Solids and Structures, 2003, 40(13-14): 3311-3330. doi: 10.1016/S0020-7683(03)00118-5
    [20] 佘银柱, 吕明, 王时英. 阶梯变厚度齿轮的横向弯曲振动[J]. 机械科学与技术, 2013, 32(1): 116-119.

    SHE Y Z, LYU M, WANG S Y. Transverse bending vibration of gear with stepped variable thickness[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(1): 116-119. (in Chinese)
    [21] 李清禄, 段鹏飞, 张靖华. 陶瓷基FGM材料线形变厚度圆板的热后屈曲[J]. 航空材料学报, 2019, 39(1): 102-107.

    LI Q L, DUAN P F, ZHANG J H. Thermal post-buckling behavior of ceramic-based FGM circular plates with linear variable thickness[J]. Journal of Aeronautical Materials, 2019, 39(1): 102-107. (in Chinese)
    [22] LI Q L, YAN X, ZHANG J H. Axisymmetric vibration analysis of graded porous Mindlin circular plates subjected to thermal environment[J]. Journal of Mechanics of Materials and Structures, 2021, 16(3): 371-388. doi: 10.2140/jomms.2021.16.371
    [23] 刘繁茂, 蒋彭, 刘永祥. 非局域热平衡理论下斯特林热机回热器温度场分布数值分析[J]. 机械科学与技术, 2019, 38(6): 863-869.

    LIU F M, JIANG P, LIU Y X. Numerical analysis of temperature distribution of stirling engine regenerator under non-local thermodynamics equilibrium theory[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(6): 863-869. (in Chinese)
    [24] EBRAHIMI F, JAFARI A, BARATI M R. Free vibration analysis of smart porous plates subjected to various physical fields considering neutral surface position[J]. Arabian Journal for Science and Engineering, 2017, 42(5): 1865-1881. doi: 10.1007/s13369-016-2348-3
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  18
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-22
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回