留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多材料微流挤出3D打印喷头优化设计

周婧 李迪 平学成 段国林

周婧,李迪,平学成, 等. 多材料微流挤出3D打印喷头优化设计[J]. 机械科学与技术,2023,42(12):2047-2054 doi: 10.13433/j.cnki.1003-8728.20220164
引用本文: 周婧,李迪,平学成, 等. 多材料微流挤出3D打印喷头优化设计[J]. 机械科学与技术,2023,42(12):2047-2054 doi: 10.13433/j.cnki.1003-8728.20220164
ZHOU Jing, LI Di, PING Xuecheng, DUAN Guolin. Optimization Design of Nozzle in 3D Printing of Multi-material Micro-flow Extrusion[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2047-2054. doi: 10.13433/j.cnki.1003-8728.20220164
Citation: ZHOU Jing, LI Di, PING Xuecheng, DUAN Guolin. Optimization Design of Nozzle in 3D Printing of Multi-material Micro-flow Extrusion[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(12): 2047-2054. doi: 10.13433/j.cnki.1003-8728.20220164

多材料微流挤出3D打印喷头优化设计

doi: 10.13433/j.cnki.1003-8728.20220164
基金项目: 天津市自然科学基金项目(18JCQNJC75100)与天津市科技计划项目(18ZXRHGX0020)
详细信息
    作者简介:

    周婧(1983−),讲师,硕士生导师,研究方向为增材制造,机电一体化系统研究,zhoujing313@tust.edu.cn

    通讯作者:

    段国林,教授,博士生导师,glduan@hebut.edu.cn

  • 中图分类号: TP23;TP331

Optimization Design of Nozzle in 3D Printing of Multi-material Micro-flow Extrusion

  • 摘要: 为了满足微流挤出工艺陶瓷3D打印机连续打印多材料以及均匀混合的要求,设计了变内径螺杆挤出式3D打印机挤出混料新结构,不仅可以实现高固含量浆料在喷头内部单向输送,同时通过变内径螺杆旋转搅拌使两种材料混合均匀。通过Ansys响应面优化,在挤出头段以最小压力实现最大面积加权平均速度为目标函数,实现在低功耗高输出的不同需求下匹配不同挤出速度;在螺杆段以优化最大剪切速率为目标函数,实现两种陶瓷浆料的均匀混合。结果表明,通过参数化优化后可以在螺杆低转速与小型化的要求下,实现不同小流率高精度打印及两种材料的均匀混合。
  • 图  1  挤出机结构示意图

    Figure  1.  Schematic diagram of extruder structure

    图  2  陶瓷浆料运动分析

    Figure  2.  Ceramic slurry motion analysis

    图  3  变直径螺杆局部图

    Figure  3.  Part of a variable diameter screw

    图  4  不同固含量氧化锆陶瓷浆料的流变特性

    Figure  4.  Rheological properties of zirconia ceramic pastes with different solid content

    图  5  双锥角阶梯降压式数学模型

    Figure  5.  Doublecone Angle step-down mathematical model

    图  6  喷嘴直径与长度响应面

    Figure  6.  Nozzle diameter and length response surface

    图  7  中间段直径与长度响应面

    Figure  7.  Intermediate segment diameter and length response surface

    图  8  压缩角响应面

    Figure  8.  Response surface of compression angle

    图  9  响应面优化结果候选点

    Figure  9.  Candidate points of response surface optimization result

    图  10  壁面剪切应力

    Figure  10.  Wall shear stress

    图  11  Z方向剪切速率

    Figure  11.  Z-direction shear rate

    图  12  转速与最大剪切速率

    Figure  12.  Speed and maximum shear rate

    图  13  筒内径与螺距响应面

    Figure  13.  Response surface of cylinder inner diameter and pitch

    图  14  螺棱宽度与螺距响应面

    Figure  14.  Spiral edge width and pitch response surface

    图  15  筒内径与最大剪切速率

    Figure  15.  Tube inner diameter and maximum shear rate

    图  16  螺棱宽度与最大剪切速率

    Figure  16.  Spiral edge width and maximum shear rate

    图  17  螺距与最大剪切速率

    Figure  17.  Pitch and maximum shear rate

  • [1] 贲玥, 张乐, 魏帅, 等. 3D打印陶瓷材料研究进展[J]. 材料导报, 2016, 30(21): 109-118.

    BEN Y, ZHANG L, WEI S, et al. Research progress of 3D printed ceramic materials[J]. Materials Reports, 2016, 30(21): 109-118. (in Chinese)
    [2] 卢秉恒. 增材制造技术——现状与未来[J]. 中国机械工程, 2020, 31(1): 19-23. doi: 10.3969/j.issn.1004-132X.2020.01.003

    LU B C. Additive manufacturing-current situation and future[J]. China Mechanical Engineering, 2020, 31(1): 19-23. (in Chinese) doi: 10.3969/j.issn.1004-132X.2020.01.003
    [3] 张静, 周婧, 段国林. 基于螺杆泵送料的陶瓷三维打印机挤出机理[J]. 中国机械工程, 2020, 31(10): 1252-1259. doi: 10.3969/j.issn.1004-132X.2020.10.018

    ZHANG J, ZHOU J, DUAN G L. Extrusion mechanism of ceramic 3D printer based on screw pump feeding[J]. China Mechanical Engineering, 2020, 31(10): 1252-1259. (in Chinese) doi: 10.3969/j.issn.1004-132X.2020.10.018
    [4] OBER T J, FORESTI D, LEWIS J A. Active mixing of complex fluids at the microscale[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(40): 12293-12298. doi: 10.1073/pnas.1509224112
    [5] LEU M C, TANG L, DEUSER B, et al. Freeze-form extrusion fabrication of composite structures[R]. International Solid Freeform Fabrication Symposium.
    [6] DE CASTRO SILVEIRA Z, DE FREITAS M S, NETO P I, et al. Design development and functional validation of an interchangeable head based on mini screw extrusion applied in an experimental desktop 3-D printer[J]. International Journal of Rapid Manufacturing, 2014, 4(1): 49-65. doi: 10.1504/IJRAPIDM.2014.062037
    [7] 吴明星. 微型挤出熔体流变行为分析及螺杆优化设计研究[D]. 广州: 华南理工大学, 2010.

    WU M X. Research of rheological behavior of melt and optimal design for screw based on micro-extrusion[D]. Guangzhou: South China University of Technology, 2010. (in Chinese)
    [8] 王世博. FDM挤出头CFD分析与混色挤出头优化设计[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    WANG S B. CFD analysis of fused deposition modelling nozzles and optimal design of mixing nozzles[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    [9] 程凯, 兰红波, 邹淑亭, 等. 多材料多尺度3D打印主动混合喷头的研究[J]. 中国科学: 技术科学, 2017, 47(2): 149-162.

    CHENG K, LAN H B, ZOU S T, et al. Research on active mixing printhead for multi-material and multi-scale 3D printing[J]. Scientia Sinica (Technologica) 2017, 47(2): 149-162. (in Chinese)
    [10] 李亚运. 陶瓷无模直写成型技术的研究[D]. 北京: 清华大学, 2015.

    LI Y Y. Research on the freeform direct writing technique based on ceramic ink[D]. Beijing: Tsinghua University, 2015. (in Chinese)
    [11] HOHMANN J K, RENNER M, WALLER E H, et al. Three-dimensional μ-printing: an enabling technology[J]. Advanced Optical Materials, 2015, 3(11): 1488-1507. doi: 10.1002/adom.201500328
    [12] 贾明印, 薛平, 朱复华. 新型螺杆挤出机熔体输送理论的研究[J]. 中国塑料, 2006, 20(3): 103-107. doi: 10.3321/j.issn:1001-9278.2006.03.023

    JIA M Y, XUE P, ZHU F H. Study on the theory of melt conveying for the novel screw extruder[J]. China Plastics, 2006, 20(3): 103-107. (in Chinese) doi: 10.3321/j.issn:1001-9278.2006.03.023
    [13] 丛日原, 杜云刚, 鲁玥, 等. 陶瓷3D打印机挤出机的设计与仿真分析[J]. 中国陶瓷工业, 2019, 26(4): 13-17.

    CONG R Y, DU Y G, LU Y, et al. Design and simulation analysis of ceramic 3D printer extruder[J]. China Ceramic Industry, 2019, 26(4): 13-17. (in Chinese)
    [14] 夏晓光, 段国林. 基于溶剂挥发的陶瓷直写成型工艺[J]. 硅酸盐学报, 2020, 48(12): 1880-1885.

    XIA X G, DUAN G L. Ceramic direct ink writing process based on solvent evaporation[J]. Journal of the Chinese Ceramic Society, 2020, 48(12): 1880-1885. (in Chinese)
    [15] 李烁, 徐元铭, 张俊. 复合材料加筋结构的神经网络响应面优化设计[J]. 机械工程学报, 2006, 42(11): 115-119. doi: 10.3321/j.issn:0577-6686.2006.11.018

    LI S, XU Y M, ZHANG J. Neural network response surface optimization design for composite stiffened structures[J]. Journal of Mechanical Engineering, 2006, 42(11): 115-119. (in Chinese) doi: 10.3321/j.issn:0577-6686.2006.11.018
  • 加载中
图(17)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  39
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-23
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回