留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中功率涡桨发动机减振系统设计与试验研究

董万元 陈永辉 王建强 陈春兰 范勇军 吴谋彬

董万元, 陈永辉, 王建强, 陈春兰, 范勇军, 吴谋彬. 中功率涡桨发动机减振系统设计与试验研究[J]. 机械科学与技术, 2023, 42(10): 1760-1766. doi: 10.13433/j.cnki.1003-8728.20220128
引用本文: 董万元, 陈永辉, 王建强, 陈春兰, 范勇军, 吴谋彬. 中功率涡桨发动机减振系统设计与试验研究[J]. 机械科学与技术, 2023, 42(10): 1760-1766. doi: 10.13433/j.cnki.1003-8728.20220128
DONG Wanyuan, CHEN Yonghui, WANG Jianqiang, CHEN Chunlan, FAN Yongjun, WU Moubin. Design and Experimental Study on Vibration Isolation System of Medium Power Turboprop Engine[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1760-1766. doi: 10.13433/j.cnki.1003-8728.20220128
Citation: DONG Wanyuan, CHEN Yonghui, WANG Jianqiang, CHEN Chunlan, FAN Yongjun, WU Moubin. Design and Experimental Study on Vibration Isolation System of Medium Power Turboprop Engine[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1760-1766. doi: 10.13433/j.cnki.1003-8728.20220128

中功率涡桨发动机减振系统设计与试验研究

doi: 10.13433/j.cnki.1003-8728.20220128
基金项目: 国家民机科研专项基金项目
详细信息
    作者简介:

    董万元(1986-), 工程师, 硕士研究生, 研究方向为振动控制, 994992628@qq.com

  • 中图分类号: TH113.1;U441.3

Design and Experimental Study on Vibration Isolation System of Medium Power Turboprop Engine

  • 摘要: 针对涡桨飞机发动机振动严酷的问题, 利用氢化丁腈橡胶设计了一种中功率涡桨发动机减振系统, 基于Workbench ANSYS软件研究了含橡胶实体单元的减振系统动力学建模分析方法; 再以加速度传递率为隔振性能评价准则, 设计了中功率涡桨发动机减振性能试验系统, 通过试验研究减振系统的减振性能。结果表明: 在小变形假设下利用橡胶材料硬度估算其弹性模量, 由线弹性模型模拟橡胶材料开展减振系统动力学仿真分析, 仿真分析结果与扫频试验结果误差小于10%;通过随机振动试验测得减振系统对发动机1阶窄带激励的隔振效率大于70%, 对2阶窄带激励的隔振效率大于85%, 设计的减振系统对发动机窄带激励具有优良的隔振效果。
  • 图  1  涡桨发动机减振系统

    Figure  1.  Vibration isolator of turboprop engine

    图  2  减振装置外形与结构

    Figure  2.  Outline and structure of vibration isolator

    图  3  减振系统有限元模型

    Figure  3.  Finite element model of isolator

    图  4  模态计算云图

    Figure  4.  Cloud chart of model calculation

    图  5  发动机振动试验系统

    Figure  5.  Engine vibration test system

    图  6  振动试验频谱

    Figure  6.  Spectrum of vibration test

    图  7  振动试验

    Figure  7.  Vibration test

    图  8  仿真与试验曲线对比

    Figure  8.  Comparison of simulation and test curves

    图  9  随机振动试验结果

    Figure  9.  Random vibration test results

    表  1  模态计算结果

    Table  1.   Results on model calculation

    阶数 模态频率/Hz 振型
    1 18.3 y轴俯仰振动
    2 21.1 z轴偏摆振动
    3 30.4 沿z轴振动
    4 39.4 沿y轴振动
    5 55.2 x轴转动
    6 89.1 沿x轴振动
    下载: 导出CSV

    表  2  仿真与试验误差分析

    Table  2.   Error analysis of simulation and experiment

    名称 x y z
    谐振点频率 放大倍数 谐振点1频率 放大倍数 谐振点2频率 放大倍数 谐振点1频率 放大倍数 谐振点2频率 放大倍数
    模态分析结果 89.1 Hz 21.1 Hz 39.4 Hz 18.3 Hz 30.4 Hz
    沿x轴振动 y轴俯仰振动 沿y轴振动 z轴偏摆振动 沿z轴振动
    扫频仿真结果 90.0 Hz 8.9 19.0 Hz 2.3 32.5 Hz 3.7 20.0 Hz 5.8 30.0 1.1
    扫频试验结果 87.1 Hz 9.6 20.6 Hz 2.4 35.2 Hz 4.1 20.9 Hz 6.4 28.3 0.8
    误差 3.3% -7.3% -7.8% -4.2% -7.7% -9.8% -4.3% -9.4% 6.0% 37.5%
    下载: 导出CSV

    表  3  隔振效率试验结果

    Table  3.   Test results on vibration isolation efficiency

    名称 x y z
    1阶窄带激励 2阶窄带激励 1阶窄带激励 2阶窄带激励 1阶窄带激励 2阶窄带激励
    激励均方根值/g 2.025 18 2.886 93 1.812 65 3.394 91 2.230 21 2.506 97
    测点1均方根/g 0.601 49 0.342 18 0.419 04 0.052 17 0.132 03 0.227 83
    测点2均方根/g 0.388 92 0.104 681 0.041 666 0.164 84 0.473 54 0.129 73
    测点1减振效/% 70.2 88.1 76.9 98.5 94.1 90.9
    测点2减振效/% 80.8 96.4 97.7 95.1 78.7 94.8
    下载: 导出CSV
  • [1] 中国人民解放军总装备部电子信息基础部, 中国国家标准化管理委员会. GJB 150.16A-2009军用装备实验室环境试验方法第16部分: 振动试验[S]. 北京: 装备部军标出版发行部, 2009.

    Electronic Information Infrastructure Department of the General Equipment Department of the People's Liberation Army of China, Standardization Administration. GJB 150. 16A-2009, Laboratory environmental test methods for military materiel-Part 16: Vibration test[S]. Beijing: General Equipment Department of Military Standard Publishing and Distribution Department, 2009. (in Chinese)
    [2] Shmyrov V F. Airplant power plants systems designing[M]. Kharkiv: National Aerospace University, 2010.
    [3] TAYLOR E S, BROWNE K A. Vibration isolation of aircraft power plants[J]. Journal of the Aeronautical Sciences, 1938, 6(2): 43-49. doi: 10.2514/8.760
    [4] William H Phillips. Effect of structural flexibility on the design of vibration-isolating mounts for aircraft engines[J]. NASA technical memorandum-85725, 1984: 1-2.
    [5] 陈永辉, 陈春兰, 苏尔敦, 等. 涡桨发动机安装系统动力学设计方法[J]. 科学技术与工程, 2017, 17(28): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201728002.htm

    CHEN Y H, CHEN C L, SU E D, et al. Dynamic design method of turboprop engine mount[J]. Science Technology and Engineering, 2017, 17(28): 9-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201728002.htm
    [6] 陈永辉, 王会利, 苏尔敦, 等. 涡桨发动机橡胶隔振器设计方法研究[J]. 科学技术与工程, 2013, 13(20): 5889-5893. doi: 10.3969/j.issn.1671-1815.2013.20.029

    CHEN Y H, WANG H L, SU E D, et al. Design method of aeroengine rubber vibration isolator[J]. Science Technology and Engineering, 2013, 13(20): 5889-5893. (in Chinese) doi: 10.3969/j.issn.1671-1815.2013.20.029
    [7] 陈永辉, 陈春兰, 苏尔敦, 等. 航空发动机安装系统动力学设计技术研究[J]. 计算机仿真, 2018, 35(6): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201806006.htm

    CHEN Y H, CHEN C L, SU E D, et al. Research on dynamic design technology of aero-engine mounting system[J]. Computer Simulation, 2018, 35(6): 23-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201806006.htm
    [8] 陈春兰, 苏尔敦. 某涡桨发动机隔振安装系统弹性参数优化研究[J]. 装备环境工程, 2019, 16(5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201905001.htm

    CHEN C L, SU E D. Optimization of elastic parameter of vibration isolation system for turboprop engine[J]. Equipment Environmental Engineering, 2019, 16(5): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201905001.htm
    [9] 王迪. 基于某型涡桨发动机橡胶隔振器动力学特性研究[D]. 南京: 南京航空航天大学, 2017.

    WANG D. Research on dynamic properties of rubber isolator based on a certain turboprop engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017. (in Chinese)
    [10] 贺尔铭, 陈熠, 李玉龙, 等. 机翼双梁模型的动力学修正及应用[J]. 应用力学学报, 2013, 30(3): 367-372. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201303012.htm

    HE E M, CHEN Y, LI Y L, et al. Dynamic modification and application of wing double-beam model[J]. Chinese Journal of Applied Mechanics, 2013, 30(3): 367-372. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201303012.htm
    [11] CHEN G. Vibration modelling and verifications for whole aero-engine[J]. Journal of Sound and Vibration, 2015, 349: 163-176.
    [12] 屈美娇, 陈果, 冯国全. 安装节刚度对发动机整机耦合振动的影响分析[J]. 航空动力学报, 2017, 32(7): 1736-1746. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201707028.htm

    QU M J, CHEN G, FENG G Q. Analysis on effect of mount stiffness on whole engine coupling vibration[J]. Journal of Aerospace Power, 2017, 32(7): 1736-1746. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201707028.htm
    [13] 樊康, 华春蓉, 闫兵, 等. 某航空发动机扭振减振器失效机理分析[J]. 机械科学与技术, 2018, 37(2): 318-323. doi: 10.13433/j.cnki.1003-8728.2018.0225

    FAN K, HUA C R, YAN B, et al. Failure mechanism analysis of torsional vibration damper in an aircraft engine[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(2): 318-323. (in Chinese) doi: 10.13433/j.cnki.1003-8728.2018.0225
    [14] 户原春彦传. 防振橡胶及其应用[M]. 牟传文, 译. 北京: 中国铁道出版社, 1982.

    HU Y C Y. Anti-vibration rubber and its application[M]. MU C W, trans. Beijing: China Railway Publishing House, 1982. (in Chinese)
    [15] 中华人民共和国工业和信息化部, 中华人民共和国航空行业标准委员会, HB 6167.6-2014民用飞机机载设备环境条件和试验方法第6部分: 振动试验[S]. 北京: 中国航空综合技术研究所出版社, 2014.

    Ministry of Industry and Information Technology of the People's Republic of China, Aviation Industry Standardiz-ation Administration. HB 6167.6-2014 Environmental conditions and test procedures for airborne equipment of civil airplane-Part 16: Vibration test[S]. Beijing: China Aviation Comprehensive Technology Research Institute Press, 2014. (in Chinese)
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  50
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-11
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回