留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FDM直齿轮尺寸偏差的试验研究与工艺参数优化

刘健 王紫贤 王晨悦 刘善慧 侯和平

刘健,王紫贤,王晨悦, 等. FDM直齿轮尺寸偏差的试验研究与工艺参数优化[J]. 机械科学与技术,2023,42(8):1270-1276 doi: 10.13433/j.cnki.1003-8728.20220099
引用本文: 刘健,王紫贤,王晨悦, 等. FDM直齿轮尺寸偏差的试验研究与工艺参数优化[J]. 机械科学与技术,2023,42(8):1270-1276 doi: 10.13433/j.cnki.1003-8728.20220099
LIU Jian, WANG Zixian, WANG Chenyue, LIU Shanhui, HOU Heping. Experimental Study on Dimensional Deviation of FDM Spur Gear and Optimization of Process Parameters[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1270-1276. doi: 10.13433/j.cnki.1003-8728.20220099
Citation: LIU Jian, WANG Zixian, WANG Chenyue, LIU Shanhui, HOU Heping. Experimental Study on Dimensional Deviation of FDM Spur Gear and Optimization of Process Parameters[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1270-1276. doi: 10.13433/j.cnki.1003-8728.20220099

FDM直齿轮尺寸偏差的试验研究与工艺参数优化

doi: 10.13433/j.cnki.1003-8728.20220099
基金项目: 陕西省重点研发计划(2020ZDLGY14-06)
详细信息
    作者简介:

    刘健(1982−),副教授,硕士生导师,研究方向为3D打印工艺及仿真,liujian@xaut.edu.cn

  • 中图分类号: TH161

Experimental Study on Dimensional Deviation of FDM Spur Gear and Optimization of Process Parameters

  • 摘要: 熔融沉积成型(FDM)过程中热塑性材料的热胀冷缩是影响成型件尺寸精度的重要因素。本文以分层厚度、喷头温度、打印速度、底板温度这4个打印参数为控制变量,利用正交试验研究了打印参数对聚合物直齿轮尺寸精度的影响,运用三维扫描技术对聚合物直齿轮打印件进行测量,分析了齿轮各部位的变形特征,进而计算出不同打印参数组合下的齿廓总偏差。采用齿距仪测量了聚合物直齿轮打印件的齿距偏差。运用极差法分析了打印参数对齿廓总偏差和齿距偏差的影响顺序。最后,采用综合平衡法获得了最优工艺参数组合:喷头温度230 ℃、底板温度87 ℃、打印速度40 mm/s、层厚0.1 mm。
  • 图  1  FDM聚合物直齿轮样本

    Figure  1.  FDM polymer spur gear sample

    图  2  样本 5 的扫描模型与设计模型对齐图

    Figure  2.  Alignment of the scanned model and design model of sample 5

    图  3  直齿轮尺寸偏差分布云图

    Figure  3.  Distribution cloud map of size deviations of the spur gear

    图  4  节点选取示意图

    Figure  4.  Schematic diagram of node selection

    图  5  节点齿廓偏差变化曲线

    Figure  5.  The variation curve of node profile deviation

    图  6  齿距示意图

    Figure  6.  Schematic diagram of pitch

    图  7  齿距选取示意图

    Figure  7.  Schematic diagram of pitch selection

    图  8  聚合物直齿轮尺寸偏差随打印参数的变化曲线

    Figure  8.  The variation curve of the size deviation of the polymer spur gear with printing parameters

    表  1  打印参数设置

    Table  1.   Printing parameter settings

    代码控制参数水平1水平2水平3
    A喷头温度/℃225230235
    B底板温度/℃879093
    C打印速度/(mm·s−1405060
    D层厚/mm0.10.20.3
    下载: 导出CSV

    表  2  L9(34)正交试验表

    Table  2.   L9(34) orthogonal experimental table

    试验编号控制参数代码
    ABCD
    1A1B1C1D1
    2A1B2C2D2
    3A1B3C3D3
    4A2B1C2D3
    5A2B2C3D1
    6A2B3C1D2
    7A3B1C3D2
    8A3B2C1D3
    9A3B3C2D1
    下载: 导出CSV

    表  3  齿廓总偏差

    Table  3.   Total profile deviation mm

    编号总偏差
    左齿面右齿面齿廓
    10.1980.1660.182
    20.2260.2770.252
    30.3550.3640.360
    40.2490.3040.277
    50.2810.1980.240
    60.2280.2750.252
    70.3580.2220.290
    80.1860.2130.200
    90.1660.1510.159
    下载: 导出CSV

    表  4  齿距偏差测量结果

    Table  4.   Measurement results of pitch deviation mm

    齿轮第一次第二次第三次第四次第五次平均值
    10.0260.0240.0220.0300.0250.025
    20.0250.0360.0250.0340.0320.030
    30.0280.0350.0420.0380.0300.035
    40.0250.0240.0350.0320.0260.028
    50.0300.0200.0250.0210.0290.025
    60.0250.0290.0280.0330.0250.028
    70.0320.0280.0290.0380.0280.031
    80.0450.0350.0380.0300.0360.037
    90.0260.0320.0220.0260.0300.027
    下载: 导出CSV

    表  5  齿廓总偏差的极差分析

    Table  5.   Range analysis of total profile deviation

    指标ABCD
    齿廓总偏差/mmK10.7940.7490.6340.581
    K20.7690.6920.6880.794
    K30.6490.7710.8900.837
    k10.2650.2500.2110.194
    k20.2560.2310.2290.265
    k30.2160.2570.2970.279
    极差R0.0490.0260.0860.085
    因素主次顺序CDAB
    最优方案C1D1A3B2
    下载: 导出CSV

    表  6  齿距偏差的极差分析

    Table  6.   Range analysis of pitch deviation

    指标ABCD
    齿距偏差/mmK10.0900.0840.0900.077
    K20.0810.0920.0850.089
    K30.0950.0900.0910.100
    k10.0300.0280.0300.026
    k20.0270.0310.0280.030
    k30.0320.0300.0300.033
    极差R0.0050.0030.0020.007
    因素主次顺序DABC
    最优方案D1A2B1C2
    下载: 导出CSV
  • [1] 薛乐, 赵东标. 熔融沉积成型自适应树状支撑生成算法研究[J]. 机械科学与技术, 2021, 40(11): 1730-1734.

    XUE L, ZHAO D B. Research on adaptive tree support generation algorithm for fused deposition modeling[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(11): 1730-1734. (in Chinese)
    [2] SINGH S, SINGH G, PRAKASH C, et al. Current status and future directions of fused filament fabrication[J]. Journal of Manufacturing Processes, 2020, 55: 288-306. doi: 10.1016/j.jmapro.2020.04.049
    [3] PISULA J, BUDZIK G, TUREK P, et al. An analysis of polymer gear wear in a spur gear train made using FDM and FFF methods based on tooth surface topography assessment[J]. Polymers, 2021, 13(10): 1649. doi: 10.3390/polym13101649
    [4] MATKOVIČ S, POGAČNIK A, KALIN M. Wear-coefficient analyses for polymer-gear life-time predictions: a critical appraisal of methodologies[J]. Wear, 2021, 480-481: 203944. doi: 10.1016/j.wear.2021.203944
    [5] 胡邓平, 文泽军, 陈裕和, 等. 基于3D打印技术的FDM薄板塑件表面成型精度试验研究[J]. 中国塑料, 2017, 31(2): 82-87.

    HU D P, WEN Z J, CHEN Y H, et al. Surface-molding accuracy of FDM thin plastic parts molded by 3D printing[J]. China Plastics, 2017, 31(2): 82-87. (in Chinese)
    [6] CHARALAMPOUS P, KOSTAVELIS I, KONTODINA T, et al. Learning-based error modeling in FDM 3D printing process[J]. Rapid Prototyping Journal, 2021, 27(3): 507-517. doi: 10.1108/RPJ-03-2020-0046
    [7] KUO C C, WU Y R, LI M H, et al. Minimizing warpage of ABS prototypes built with low-cost fused deposition modeling machine using developed closed-chamber and optimal process parameters[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(1-4): 593-602. doi: 10.1007/s00170-018-2969-7
    [8] 冯建军, 梁宏斌, 于阳. FDM快速成型工艺参数的分析与优化研究[J]. 机械科学与技术, 2019, 38(5): 742-748.

    FENG J J, LIANG H B, YU Y. Analysis and optimization of processing parameters in FDM rapid prototyping[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(5): 742-748. (in Chinese)
    [9] 刘健, 南思豪, 关舒文, 等. FDM工艺参数及后处理对PLA筒形件成型质量的影响[J]. 中国塑料, 2019, 33(7): 57-62. doi: 10.19491/j.issn.1001-9278.2019.07.010

    LIU J, NAN S H, GUAN S W, et al. Effects of FDM process parameters and post-finishing on forming quality of PLA cylindrical parts[J]. China Plastics, 2019, 33(7): 57-62. (in Chinese) doi: 10.19491/j.issn.1001-9278.2019.07.010
    [10] PISULA J. The geometric accuracy analysis of polymer spiral bevel gears carried out in a measurement system based on the Industry 4 0 structure[J]. Polimery, 2019, 64(5): 353-360. doi: 10.14314/polimery.2019.5.6
    [11] BUDZIK G, DZIUBEK T, KOZIK B, et al. Methodology of increasing accuracy of gear models manufactured using additive FDM method[J]. Advances in Manufacturing Science and Technology, 2015, 39(4): 37-52.
    [12] 王春香, 石宏民. 基于三维扫描点云对渐开线斜齿圆柱齿轮的参数提取[J]. 机床与液压, 2014, 42(23): 100-105. doi: 10.3969/j.issn.1001-3881.2014.23.025

    WANG C X, SHI H M. Acquisition of parameter of involute helical cylinder gear wheel based on point cloud by 3-D laser scanner[J]. Machine Tool & Hydraulics, 2014, 42(23): 100-105. (in Chinese) doi: 10.3969/j.issn.1001-3881.2014.23.025
    [13] 汤洁, 刘小兵, 李睿. 未知参数小模数齿轮齿距和齿廓偏差视觉测量[J]. 光学 精密工程, 2021, 29(1): 100-109. doi: 10.37188/OPE.20212901.0100

    TANG J, LIU X B, LI R. Vision measurement of pitch and profile deviations for small modulus gears with unknown parameters[J]. Optics and Precision Engineering, 2021, 29(1): 100-109. (in Chinese) doi: 10.37188/OPE.20212901.0100
    [14] 魏建杰, 汤洁, 石照耀. 基于ISO 1328-1: 2013的齿距偏差评定方法[J]. 测控技术, 2019, 38(9): 88-91.

    WEI J J, TANG J, SHI Z Y. Evaluation software of gear pitch deviations based on ISO 1328-1: 2013[J]. Measurement & Control Technology, 2019, 38(9): 88-91. (in Chinese)
    [15] 杨裕金, 林鸿裕, 杨晨, 等. 基于正交实验的熔融沉积成型工艺参数的优化[J]. 中国塑料, 2019, 33(6): 69-75. doi: 10.19491/j.issn.1001-9278.2019.06.012

    YANG Y J, LIN H Y, YANG C, et al. Optimization of process parameters of fused deposition modeling based on orthogonal experiment[J]. China Plastics, 2019, 33(6): 69-75. (in Chinese) doi: 10.19491/j.issn.1001-9278.2019.06.012
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  68
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-12
  • 网络出版日期:  2023-09-13
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回